![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形定向攻克练习题(无超纲)第1页](http://m.enxinlong.com/img-preview/2/3/12733864/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形定向攻克练习题(无超纲)第2页](http://m.enxinlong.com/img-preview/2/3/12733864/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题鲁教版(五四制)六年级数学下册第五章基本平面图形定向攻克练习题(无超纲)第3页](http://m.enxinlong.com/img-preview/2/3/12733864/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学六年级下册第五章 基本平面图形综合与测试优秀课后测评
展开
这是一份数学六年级下册第五章 基本平面图形综合与测试优秀课后测评,共25页。试卷主要包含了如图,一副三角板,已知,则的补角等于等内容,欢迎下载使用。
六年级数学下册第五章基本平面图形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,点C为线段AB的中点,点D在直线AB上,并且满足,若cm,则线段AB的长为( )A.4cm B.36cm C.4cm或36cm D.4cm或2cm2、如图,点,为线段上两点,,且,设,则关于的方程的解是( )A. B. C. D.3、体育课上体育委员为了让男生站成一条直线,他先让前两个男生站好不动,其他男生依次往后站,要求目视前方只能看到各自前面的一个同学的后脑勺,这种做法的数学依据是( )A.两点确定一条直线 B.两点之间线段最短C.线段有两个端点 D.射线只有一个端点4、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短 B.两点确定一条直线C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离5、已知∠α=125°19′,则∠α的补角等于( )A.144°41′ B.144°81′ C.54°41′ D.54°81′6、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )A.过一点有无数条直线 B.两点确定一条直线C.两点之间线段最短 D.线段是直线的一部分7、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于( )A.160° B.140° C.130° D.110°8、已知,则的补角等于( )A. B. C. D.9、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线C.两点确定一条直线 D.两点之间线段最短10、中国古代大建筑群平面中统率全局的轴线称为“中轴线”,北京中轴线是古代中国独特城市规划理论的产物,故宫是北京中轴线的重要组成部分.故宫中也有一条中轴线,北起神武门经乾清宫、保和殿、太和殿、南到午门,这条中轴线同时也在北京城的中轴线上.图中是故宫博物院的主要建筑分布图.其中,点A表示养心殿所在位置,点O表示太和殿所在位置,点B表示文渊阁所在位置.已知养心殿位于太和殿北偏西方向上,文渊阁位于太和殿南偏东方向上,则∠AOB的度数是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知∠1的余角等于,那么∠1的补角等于______.2、在同一平面内.O为直线AB上一点.射线OE将平角∠AOB分成∠AOE、∠BOE两部分.已知∠BOE=α.OC为∠AOE的平分线.∠DOE=90°.则∠COD=______(用含有α的代数式表示)3、下列结论:①多项式的次数为3;②若,则OP平分∠AOB;③满足的整数x的值有5个;④若,则关于x的一元一次方程的解为.其中正确的结论是___(填序号).4、如图,线段,点是线段上一点,点、分别是、的中点,则的长为__________.5、若一个角的补角是其余角的3倍,则这个角的度数为___.三、解答题(5小题,每小题10分,共计50分)1、如图①,将一副常规直角三角尺的直角顶点叠放在一起,,.解答下列问题.(1)若∠DCE=35°24',则∠ACB= ;若∠ACB=115°,则∠DCE= ;(2)当∠DCE=α时,求∠ACB的度数,并直接写出∠DCE与∠ACB的关系;(3)在图①的基础上作射线BC,射线EC,射线DC,如图②,则与∠ECB互补的角有 个.2、已知,OB为内部的一条射线.(1)如图1,若OM平分,ON平分,求的度数;(2)如图2,在内部,且,OF平分,OG平分(射线OG在射线OC左侧),求的度数;(3)在(2)的条件下,绕点O运动过程中,若,则的度数.3、已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.4、如图,已知A,B,C,D四点,按下列要求画图形:(1)画射线CD;(2)画直线AB;(3)连接DA,并延长至E,使得AE=DA.5、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.(1)根据题意画出图形;(2)求出∠DOE的度数;(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数. -参考答案-一、单选题1、C【解析】【分析】分点D在点B的右侧时和点D在点B的左侧时两种情况画出图形求解.【详解】解:当点D在点B的右侧时,∵,∴AB=BD,∵点C为线段AB的中点,∴BC=,∵,∴,∴BD=4,∴AB=4cm;当点D在点B的左侧时,∵,∴AD=,∵点C为线段AB的中点,∴AC=BC=,∵,∴-=6,∴AB=36cm,故选C.【点睛】本题考查了线段的和差,以及线段中点的计算,分两种情况计算是解答本题的关键.2、D【解析】【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.【详解】解:,,,,解得,则关于的方程为,解得,故选:D.【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.3、A【解析】【分析】根据经过两点有一条直线,并且只有一条直线即可得出结论.【详解】解:∵让男生站成一条直线,他先让前两个男生站好不动,∴经过两点有一条直线,并且只有一条直线,∴这种做法的数学依据是两点确定一条直线.故选A.【点睛】本题考查直线公理,掌握直线公理是解题关键,同时也掌握线段公理,线段的特征,射线特征.4、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.5、C【解析】【分析】两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.【详解】解: ∠α=125°19′, ∠α的补角等于 故选C【点睛】本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.6、B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.∴能解释这一实际应用的数学知识是两点确定一条直线.故选:B.【点睛】本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.7、A【解析】【分析】如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【详解】解:∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.故选:A.【点睛】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.8、C【解析】【分析】补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.【详解】解:∵,∴的补角等于,故选:C.【点睛】本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.9、D【解析】【分析】根据题意可知,原因为两点之间线段最短,据此分析即可【详解】解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短故选D【点睛】本题考查了线段的性质,掌握两点之间线段最短是解题的关键.10、B【解析】【分析】由图知,∠AOB=180°−+,从而可求得结果.【详解】∠AOB=180°−+=180°-37°=143°故选:B【点睛】本题考查了方位角及角的和差运算,掌握角的和差运算是关键.二、填空题1、135°20′【解析】【分析】求出∠1的度数,再求∠1的补角即可.【详解】解:∵∠1的余角等于,∴∠1=90°-45°20′=44°40′,∴∠1的补角为180°-∠1=180°-44°40′=135°20′,故答案为:135°20′.【点睛】本题考查互为余角,互为补角的意义,正确理解互余、互补的意义和度分秒的计算方法是解题的前提.2、或【解析】【分析】分两种情况:射线OD、OE在直线AB的同侧;射线OD、OE在直线AB的异侧;利用角平分线的定义、互补、角的和差关系即可求得结果.【详解】①当射线OD、OE在直线AB的同侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴②当射线OD、OE在直线AB的异侧时,如图所示∵OC为∠AOE的平分线∴∠1=∠2∵∠AOE+∠BOE=180°,∠BOE=α∴∠AOE=180°−α∴∴综上所述,∠COD=或.故答案为:或【点睛】本题考查了角平分线的定义,互补的定义,角的和差关系等知识,要根据题意画出图形,并注意分类讨论.3、①③④【解析】【分析】根据多项式的次数的含义可判断A,根据角平分线的定义可判断B,根据绝对值的含义与数轴上两点之间的距离可判断C,由一元一次方程的定义与一元一次方程的解法可判断D,从而可得答案.【详解】解:多项式的次数为3,故①符合题意;如图,,但OP不平分∠AOB;故②不符合题意,如图,当时,满足的整数x的值有,有5个;故③符合题意; , 为关于x的一元一次方程,则 ,故④符合题意;综上:符合题意的有①③④故答案为:①③④【点睛】本题考查的是多项式的次数,角平分线的定义,绝对值的含义,数轴上两点之间的距离,一元一次方程的定义及解一元一次方程,掌握以上基础知识是解本题的关键.4、6.5【解析】【分析】根据中点的性质得出MN=AB即可.【详解】∵点、分别是、的中点∴MC=AC;CN=BC,∴MN=MC+CN=AC+BC===6.5cm故答案为6.5.【点睛】本题考查了线段中点的定义和性质,解题的关键是熟练应用中点的性质进行计算.5、45°##45度【解析】【分析】根据补角和余角的定义,利用“一个角的补角是它的余角的度数的3倍”作为相等关系列方程求解即可得出结果.【详解】解:设这个角的度数是x,则180°-x=3(90°-x),解得x=45°.答:这个角的度数是45°.故答案为:45°.【点睛】本题考查了余角和补角的知识,设出未知数是解决本题的关键,要掌握解答此类问题的方法.三、解答题1、 (1);(2),与互为补角(3)5【解析】【分析】(1)根据三角板中的特殊角,以及互余的意义可求答案;(2)方法同(1)即可得出结论;(3)利用直角的意义,互补的定义可得出结论.(1)解:,,;,,,,故答案为:;;(2)解:,,;,即与互补;(3)解:由图可知,,与互补的角有5个;故答案为:5.【点睛】本题考查三角板的特殊内角,补角的定义及余角的定义,解题的关键是掌握互余和互补的定义和三角板的内角度数.2、 (1)80°;(2)70°(3)42°或【解析】【分析】(1)根据角平分线的性质证得,即可得到答案;(2)设∠BOF=x,根据角平分线的性质求出∠AOC=2∠COF=40°+2x,得到∠COD=∠AOD-∠AOC=140°-2x,由OG平分,求出,即可求出的度数;(3)分两种情况:①当OF在OB右侧时,由,,求得∠COF的度数,利用OF平分,得到∠AOC的度数,得到∠BOD的度数,根据OG平分,求出∠BOG的度数,即可求出答案;②当OF在OB左侧时,同理即可求出答案.(1)解:∵OM平分,ON平分,∴,∴=;(2)解:设∠BOF=x,∵,∴∠COF=20°+x,∵OF平分,∴∠AOC=2∠COF=40°+2x,∴∠COD=∠AOD-∠AOC=140°-2x,∵OG平分,∴,∴=;(3)解:当OF在OB右侧时,如图,∵,,∴∠COF=28°,∵OF平分,∴∠AOC=2∠COF=56°,∴∠COD=∠AOD-∠AOC=104°,∴∠BOD=124°,∵OG平分,∴, ∴=. 当OF在OB左侧时,如图,∵,,∴∠COF=12°,∵OF平分,∴∠AOC=2∠COF=24°,∴∠COD=∠AOD-∠AOC=136°,∴∠BOD=156°,∵OG平分,∴,∴=.∴的度数为42°或.【点睛】此题考查了几何图形中角度的计算,角平分线的性质,正确掌握角平分线的性质及图形中各角度之间的位置关系进行计算是解题的关键.3、 (1)见解析(2)3或1【解析】【分析】先根据射线的定义,画出射线AP,然后分两种情况:当点C位于点B右侧时,当点C位于点B左侧时,即可求解;(2)根据M,N分别为AB,BC的中点,可得 ,即可求解.(1)解:根据题意画出图形, 当点C位于点B右侧时,如下图:射线AP、线段AB、线段BC即为所求;当点C位于点B左侧时,如下图:(2)解: ∵M,N分别为AB,BC的中点,∴ ,∵a=4,b=2,∴ ,当点C位于点B右侧时,MN=BM+BN=3;当点C位于点B左侧时,MN=BM-BN=1;综上所述,线段MN的长为3或1.【点睛】本题主要考查了射线的定义,尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;作一条线段等于已知线段的作法是解题的关键.4、 (1)见解析(2)见解析(3)见解析【解析】【分析】(1)画射线CD即可;(2)画直线AB即可;(3)连接DA,并延长至E,使得AE=DA即可.(1)解:如图所示,射线CD即为所求作的图形;(2)解:如图所示,直线AB即为所求作的图形;(3)解:如图所示,连接DA,并延长至E,使得AE=DA.【点睛】本题考查了作图-复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.5、 (1)见解析(2)45°(3)n°【解析】【分析】(1)根据要求画出图形即可;(2)利用角平分线的定义计算即可;(3)利用(2)中,结论解决问题即可.(1)解:图形如图所示.,(2)解:∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC,∠EOC=∠BOC,∴∠DOE=(∠AOC+∠BOC)=∠AOB,∵∠AOB=90°,∴∠DOE=45°;(3)解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.【点睛】本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
相关试卷
这是一份2021学年第五章 基本平面图形综合与测试综合训练题,共25页。试卷主要包含了如图,点在直线上,平分,,,则,如图,射线OA所表示的方向是,下列说法正确的是,下列现象等内容,欢迎下载使用。
这是一份初中数学第五章 基本平面图形综合与测试课堂检测,共24页。
这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题,共23页。试卷主要包含了如果A,用度等内容,欢迎下载使用。