搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习试题(含答案及详细解析)

    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习试题(含答案及详细解析)第1页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习试题(含答案及详细解析)第2页
    2022年最新强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习试题(含答案及详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第29章 直线与圆的位置关系综合与测试一课一练

    展开

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试一课一练,共33页。
    九年级数学下册第二十九章直线与圆的位置关系课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在中,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是(       A.2cm B.2.4cm C.3cm D.3.5cm2、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是(       A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)3、如图,的切线,是切点,上的点,若,则的度数为(       A. B. C. D.4、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使AGH三点刚好在金属框上,则该金属框的半径是(       A. B. C. D.5、若正方形的边长为4,则它的外接圆的半径为(       A. B.4 C. D.26、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是(  )A.相切 B.相交C.相离、相切或相离 D.相切或相交7、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )A.2,2 B.4,4 C.4,2 D.4,8、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(       A.3 B.4 C.5 D.69、如图,AB是⊙O的直径,点DAB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于(       A.20° B.30° C.50° D.40°10、的半径为5 , 若直线与该圆相交, 则圆心到直线的距离可能是 (       A.3 B.5 C.6 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若∠A=30°,则∠D的度数为______°.2、AC是⊙O的直径,弦BDAC于点E,连接BC,过点OOFBC于点F,若BD=12cm,OEcm,则OF=________cm.3、如图,AB是⊙O的切线,A为切点,连结OAOB.若OA=5,AB=6,则tan∠AOB=______.4、已知⊙O的半径为10,直线AB与⊙O相切,则圆心O到直线AB的距离为______.5、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ACBD内接于⊙OAB是⊙O的直径,CD平分∠ACBAB于点E,点PAB延长线上,(1)求证:PC是⊙O的切线;(2)求证:(3)若,△ACD的面积为12,求PB的长.2、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点(1)求证的切线;(2)若,求的半径.3、如图,的直径,是圆上两点,且有,连结,作的延长线于点(1)求证:的切线;(2)若,求阴影部分的面积.(结果保留4、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.①设ABP三点所在圆的圆心为C,则点C的坐标是      ,⊙C的半径是      y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;(2)若点Py轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为      5、如图,四边形OAEC是平行四边形,以O为圆心,OC为半径的圆交CED,延长COOB,连接ADABABO的切线.(1)求证:ADO的切线.(2)若O的半径为4,,求平行四边形OAEC的面积. -参考答案-一、单选题1、B【解析】【分析】如图所示,过CCDAB,交AB于点D,在直角三角形ABC中,由ACBC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r【详解】解:如图所示,过CCDAB,交AB于点DRtABC中,AC=3cm,BC=4cm,根据勾股定理得:AB==5(cm),SABC=BCAC=ABCD×3×4=×10×CD解得:CD=2.4,r=2.4(cm).故选:B.【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.2、A【解析】【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作ABBC的垂线,两垂线的交点即为△ABC的外心.【详解】解:∵△ABC的外心即是三角形三边垂直平分线的交点,如图所示:EFMN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:A【点睛】此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.3、A【解析】【分析】如图,连接先求解 再利用圆周角定理可得,从而可得答案.【详解】解:如图,连接 的切线, 故选A【点睛】本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.4、A【解析】【分析】如图,记过AGH三点的圆为的垂直平分线的交点,的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过AGH三点的圆为的垂直平分线的交点, 的交点为 的交点为 延长的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 AB=2,CD=3,EF=5,结合正方形的性质可得: 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过AGH三点的圆的圆心是解本题的关键.5、C【解析】【分析】根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.【详解】解:∵四边形是正方形,的交点即为它的外接圆的圆心,故选C【点睛】本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.6、D【解析】【分析】根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.【详解】解:的半径为8,到直线的距离直线的位置关系是相切或相交.故选:D.【点睛】此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.7、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形, ∴这个正六边形半径R和扳手的开口a的值分别是4,4故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.8、B【解析】【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.9、C【解析】【分析】连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.【详解】解:连接OCDC切⊙O于点C∴∠OCD=90°,∵∠A=20°,∴∠OCA=20°,∴∠DOC=40°,∴∠D=90°-40°=50°.故选:C.【点睛】本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.10、A【解析】【分析】根据直线l和⊙O相交dr,即可判断.【详解】解:∵⊙O的半径为5,直线l与⊙O相交,∴圆心D到直线l的距离d的取值范围是0≤d<5,故选:A.【点睛】本题考查直线与圆的位置关系,解题的关键是记住①直线l和⊙O相交dr②直线l和⊙O相切d=r③直线l和⊙O相离dr二、填空题1、30【解析】【分析】连接OC,根据切线的性质定理得到∠OCD=90°,根据三角形内角和定理求出∠D【详解】解:连接OCCD为⊙O的切线,∴∠OCD=90°,由圆周角定理得,∠COD=2∠A=60°,∴∠D=90°-60°=30°,故答案为:30.【点睛】本题考查的是切线的性质,圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.2、【解析】【分析】根据题意分两种情况并综合利用垂径定理和勾股定理以及圆的基本性质进行分析即可求解.【详解】解:如图,连接BOAC是⊙O的直径,弦BDAC于点EBD=12cm,OEcmBDAC,cm,,,OFBC,,,如图,OEcmBDAC, ,,OFBC,,.故答案为:.【点睛】本题考查圆的综合问题,熟练掌握并利用垂径定理和勾股定理以及圆的基本性质进行分析是解题的关键.注意未作图题一般情况下要进行分类作图讨论.3、【解析】【分析】由题意易得∠OAB=90°,然后根据三角函数可进行求解.【详解】解:∵AB是⊙O的切线,∴∠OAB=90°,在Rt△OAB中,OA=5,AB=6,故答案为【点睛】本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.4、10【解析】【分析】根据直线AB和圆相切,则圆心到直线的距离等于圆的半径即可得问题答案.【详解】解:∵⊙O的半径为10,直线AB与⊙O相切,∴圆心到直线AB的距离等于圆的半径,d=10;故答案为:10;【点睛】本题考查了直线与圆的位置关系;熟记直线和圆的位置关系与数量之间的联系是解决问题的关键.同时注意圆心到直线的距离应是非负数.5、在⊙A【解析】【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),OA==5,∵半径为5,OA=r∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr三、解答题1、 (1)见解析(2)见解析(3)【解析】【分析】(1)连接,根据直径所对的圆周角等于90°可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是⊙O的切线;(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证(3)作于点F,勾股定求得,证明,进而求得的长,设,根据△ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长.(1)连接OC,如图,AB的直径,..半径,是⊙O的切线.(2)由(1),得.平分.,即.(3)于点F,如图,平分,由勾股定理得:...解得(舍去).Rt△ACF中,由勾股定理得:由(2)得.【点睛】本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理,掌握相似三角形的性质与判定是解题的关键.2、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接是直径,的中点.平分又∵又∵经过半径的外端,的切线.(2)解:∵中,中,.设半径为,则的半径为【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.3、 (1)见解析(2)【解析】【分析】1)要证明DEO的切线,所以连接OD,只要求出∠ODE90°即可解答;2)连接BD,利用RtADB的面积加上弓形面积即可求出阴影部分的面积.(1)证明:连接OD ∴∠CAD=∠BADOAOD∴∠OAD=∠ODA∴∠CAD=∠ODAAEOD∴∠E+ODE90°,DEAC∴∠E90°,∴∠ODE180°﹣∠E90°,OD是圆O的半径,DEO的切线;(2)连接BD ABO的直径,∴∠ADB90°,∵∠ADE60°,∠E90°,∴∠CAD90°﹣∠ADE30°,∴∠DAB=∠CAD30°,AB2BDBD2BA=4ODOB2∴△ODB是等边三角形,∴∠DOB60°,∴△ADB的面积=ADDB×2×22OAOB∴△DOB的面积=ADB的面积=∴阴影部分的面积为:ADB的面积+扇形DOB的面积﹣△DOB的面积2∴阴影部分的面积为:【点睛】本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.4、 (1)①(4,3)或C(4,−3),,②(2)【解析】【分析】(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知ABP三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点CCDy轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙Cy轴相交,设交点为,此时y轴的正半轴上,连接CA,则==CA =r=3,得,即可得;(2)如果点Py轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MAMBPAPB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点EEFx轴于F,连接EAEP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EFPE=OF=4,得,则,即可得.(1)①如图1中,x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知ABP三点在⊙C上,圆心C的坐标为(4,3),半径为3根据对称性可知点C(4,−3)也满足条件,故答案是:(4,3)或C(4,−3),y轴的正半轴上存在线段AB的“等角点”。如图2所示,当圆心为C(4,3)时,过点CCDy轴于D,则D(0,3),CD=4,∵⊙C的半径∴⊙Cy轴相交,设交点为,此时y轴的正半轴上,连接CA,则==CA =r=3CDy轴,CD=4,当圆心为C(4,-3)时,点Py轴的负半轴上,不符合题意;故答案为:(2)当过点AB的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:如果点Py轴的负半轴上,设此时圆心为E,则E在第四象限,如图3所示,在y轴的负半轴上任取一点M(不与点P重合),连接MAMBPAPB,设MB交于⊙E于点N,连接NA∵点P,点N在⊙E上,∴∠APB=∠ANB∵∠ANB是△MAN的外角,∴∠ANB>∠AMB即∠APB>∠AMB此时,过点EEFx轴于F,连接EAEP,则AF=AB=3,OF=4,∵⊙Ey轴相切于点P,则EPy轴,∴四边形OPEF是矩形,OP=EFPE=OF=4,∴⊙E的半径为4,即EA=4,∴在RtAEF中,故答案为:【点睛】本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.5、 (1)见解析(2)32【解析】【分析】(1)连接OD,证明,可得,根据切线的性质可得,进而可得,即可证明ADO的切线;(2)根据平行四边形OAEC的面积等于2倍即可求解.(1)证明:连接OD∵四边形OAEC是平行四边形,又∵AB相切于点B又∵OD的半径,AD的切线.(2)RtAOD中,∴平行四边形OABC的面积是【点睛】本题考查了切线的性质与判定,平行四边形的性质,三角形全等的性质与判定,掌握切线的性质与判定是解题的关键. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后练习题,共33页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共32页。试卷主要包含了如图,FA,如图所示,在的网格中,A等内容,欢迎下载使用。

    数学第29章 直线与圆的位置关系综合与测试课时练习:

    这是一份数学第29章 直线与圆的位置关系综合与测试课时练习,共31页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map