![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含详细解析)第1页](http://m.enxinlong.com/img-preview/2/3/12721757/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含详细解析)第2页](http://m.enxinlong.com/img-preview/2/3/12721757/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系章节练习试题(含详细解析)第3页](http://m.enxinlong.com/img-preview/2/3/12721757/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021学年第29章 直线与圆的位置关系综合与测试课堂检测
展开
这是一份2021学年第29章 直线与圆的位置关系综合与测试课堂检测,共29页。试卷主要包含了如图,A等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是( )A. B. C.5 D.52、如图,、是的切线,、是切点,点在上,且,则等于( )A.54° B.58° C.64° D.68°3、半径为10的⊙O,圆心在直角坐标系的原点,则点(8,6)与⊙O的位置关系是( )A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定4、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相离 B.相切 C.相交 D.相交或相切5、在平面直角坐标系xOy中,已知点A(﹣4,﹣3),以点A为圆心,4为半径画⊙A,则坐标原点O与⊙A的位置关系是( )A.点O在⊙A内 B.点O在⊙A外C.点O在⊙A上 D.以上都有可能6、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )A.10 B.11 C.12 D.137、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为( )A. B.C.3 D.8、如图,在平面直角坐标系中,,,.则△ABC的外心坐标为( )A. B. C. D.9、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )A.4m2 B.12m2 C.24m2 D.24m210、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知五边形是的内接正五边形,则的度数为______.2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.3、如图,AB,BC,CD分别与⊙O相切于点E、F、G三点,且AB∥CD,BO=6,CO=8,则BE+GC的长为_____.4、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.5、如图,在中,,平分,平分,,交于点,cm,cm,cm,则的面积为_______cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.(1)求证是的切线;(2)若,,求的半径.2、如图,PA,PB是圆的切线,A,B为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.3、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.(1)求证:DM是的切线;(2)求证:;(3)若,,求的半径.4、如图,已知是的直径,点在上,点在外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:是的切线.5、如图,是的切线,点在上,与相交于,是的直径,连接,若.(1)求证:平分;(2)当,时,求的半径长. -参考答案-一、单选题1、C【解析】【分析】先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PA,PB为⊙O的切线,∴PA=PB,∵∠APB=60°,∴△APB为等边三角形,∴AB=PA=5.故选:C.【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.2、C【解析】【分析】连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.【详解】解:连接,,如下图:∴∵PA、PB是的切线,A、B是切点∴∴由四边形的内角和可得:故选C.【点睛】此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.3、A【解析】【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得.【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,∴点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A.【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键.4、B【解析】【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm, ⊙O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、B【解析】【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.【详解】解:∵点A(﹣4,﹣3),∴,∵⊙A的半径为4,∴,∴点O在⊙A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.6、A【解析】【分析】作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.【详解】解:如图,作正多边形的外接圆,连接AO,BO,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数为=10.故选:A.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.7、C【解析】【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OA,OB,则OA=OB,∵四边形ABCD是正方形,∴,∴是等腰直角三角形,∵正方形ABCD的面积是18,∴,∴,即:∴故选C.【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.8、D【解析】【分析】由BC两点的坐标可以得到直线BC∥y轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为P(a,-1),利用两点距离公式和外心的性质得到,由此求解即可.【详解】解:∵B点坐标为(2,-1),C点坐标为(2, 3),∴直线BC∥y轴,∴直线BC的垂直平分线为直线y=1,∵外心是三角形三条边的垂直平分线的交点,∴△ABC外心的纵坐标为1,设△ABC的外心为P(a,1),∴,∴,解得,∴△ABC外心的坐标为(-2, 1),故选D.【点睛】本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.9、D【解析】【分析】先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,由题意得:BC=4cm,∵六边形ABCD是正六边形,∴∠BOC=360°÷6=60°,又∵OB=OC,∴△OBC是等边三角形,∴,,∴,∴,∴,故选D.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.10、A【解析】【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:A.【点睛】本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.二、填空题1、72°##72度【解析】【分析】根据正多边形的中心角的计算公式: 计算即可.【详解】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠AOB的度数为 =72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.2、【解析】【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.3、10【解析】【分析】先由切线长定理得到BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,再证明∠BOC=90°,然后利用勾股定理计算出BC即可.【详解】∵AB,BC,CD分别与⊙O相切于点E、F、G三点,∴BF=BE,CF=CG,BO平分∠ABC,CO平分∠BCD,∴,,∴,∵AB∥CD,∴∠ABC+∠BCD=180°,∴,∴∠BOC=90°,在Rt△OBC中,∵BO=6,CO=8,∴,∴BE+CG=10.故答案为:10.【点睛】此题考查了切线长定理、切线的性质、勾股定理以及直角三角形的判定与性质.此题难度适中,正确理解切线长定理是解决本题的关键.4、【解析】【分析】当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.【详解】∵圆心P的坐标为(1,0),⊙P与y轴相切与点O∴⊙P的半径为1∵点A(-3,0),点 B(0,)∴OA=3,∴∴∠BAO=30° 当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC则PC⊥AB,且PC=1∴AP=2PC=2∴OP=OA−AP=3−2=1∴P点坐标为(−1,0)即m=−1当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD则PD⊥AB,且PD=1∴AP=2PD=2∴OP=OA+AP=3+2=5∴P点坐标为(−5,0)即m=−5∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为故答案为:【点睛】本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.5、1.5【解析】【分析】根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.【详解】解:平分,平分,,交于点,点是的内心.如图,画出的内切圆,与、、分别相切于点、、,且连接,设,,,得方程组:解得:,,的面积.故答案为:1.5.【点睛】此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.三、解答题1、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接,∵,∴,∴是直径,是的中点.∵平分,∴,∵,∴,∴,∴.又∵,∴,∴,又∵经过半径的外端,∴是的切线.(2)解:∵,∴,在与中,,,∴.∴,在中,,,∴.设半径为,则,,即,∴.∴的半径为.【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.2、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,∵AC=4,∴PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x,∴,解得x=,故圆的半径为.【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.3、 (1)见解析(2)见解析(3)⊙O的半径为5.【解析】【分析】(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;(3)根据垂径定理和勾股定理即可求出结果.(1)证明:连接OD交BC于H,如图,∵点E是△ABC的内心,∴AD平分∠BAC,即∠BAD=∠CAD,∴,∴OD⊥BC,BH=CH,∵DM∥BC,∴OD⊥DM,∴DM是⊙O的切线;(2)证明:∵点E是△ABC的内心,∴∠ABE=∠CBE,∵,∴∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,即∠BED=∠DBE,∴BD=DE;(3)解:设⊙O的半径为r,连接OD,OB,如图,由(1)得OD⊥BC,BH=CH,∵BC=8,∴BH=CH=4,∵DE=2,BD=DE,∴BD=2,在Rt△BHD中,BD2=BH2+HD2,∴(2)2=42+HD2,解得:HD=2,在Rt△BHO中,r2=BH2+(r-2)2,解得:r=5.∴⊙O的半径为5.【点睛】本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.4、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.(2)解:连接AD,如图∵为直径∴∵∴∴又∵AB为直径∴AE是的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.5、 (1)见解析(2)的半径长为.【解析】【分析】(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径(1)证明:如图,连接,∵是的切线,∴,∵,∴,∴,∵,∴,∴,即平分;(2)解:如图,连接,在中,,,由勾股定理得:,∵是的直径,∴,∴,∵,∴,∴,即,解得:,∴的半径长为.【点睛】本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀同步测试题,共34页。
这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课时作业,共31页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后练习题,共30页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)