终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(含详解)

    立即下载
    加入资料篮
    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(含详解)第1页
    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(含详解)第2页
    2022年最新精品解析冀教版九年级数学下册第二十九章直线与圆的位置关系专项测试练习题(含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第29章 直线与圆的位置关系综合与测试课后复习题

    展开

    这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试课后复习题,共31页。试卷主要包含了下列说法正确的是,如图,FA,已知M等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD中,GBC的中点,过ADG三点的⊙O与边ABCD分别交于点E、点F,给出下列判断:(1)ACBD的交点是⊙O的圆心;(2)AFDE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是(       A.4 B.3 C.2 D.12、如图,BD是⊙O的切线,∠BCE=30°,则∠D=(  )A.40° B.50° C.60° D.30°3、下面四个结论正确的是(       A.度数相等的弧是等弧 B.三点确定一个圆C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等4、下列说法正确的是(       A.三点确定一个圆 B.任何三角形有且只有一个内切圆C.相等的圆心角所对的弧相等 D.正多边形一定是中心对称图形5、如图,FAFB分别与⊙O相切于AB两点,点C为劣弧AB上一点,过点C的切线分别交FAFBDE两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为(  )A. B.2 C.2 D.36、已知半圆O的直径AB=8,沿弦EF折叠,当折叠后的圆弧与直径AB相切时,折痕EF的长度m(  )A.m=4 B.m=4 C.4≤m≤4 D.4m≤47、已知M(1,2),N(3,﹣3),Pxy)三点可以确定一个圆,则以下P点坐标不满足要求的是(       A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)8、如图,中,,点O的内心.则等于(       A.124° B.118° C.112° D.62°9、如图,在矩形ABCD中,,点O在对角线BD上,以OB为半径作BC于点E,连接DE;若DE的切线,此时的半径为(       A. B. C. D.10、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是(       A.相离 B.相切 C.相交 D.相交或相切第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,⊙O的半径为5cm,正六边形ABCDEF内接于⊙O,则图中阴影部分的面积为 ___.2、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点AO_______.(填“上”、“内”、“外”)3、如图,已知PAPB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PAPB;②OPAB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).4、在中,DE分别是的中点,若等腰绕点A逆时针旋转,得到等腰,记直线的交点为P,则点P所在直线的距离的最大值为________.5、如图,PAPB分别切⊙O于点ABQ是优弧上一点,若∠P=40°,则∠Q的度数是________.三、解答题(5小题,每小题10分,共计50分)1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点DDEAC,垂足为E(1)判断DE所在直线与ΘO的位置关系,并说明理由;(2)若AE=4,ED=2,求ΘO的半径.2、如图,PAPB是圆的切线,AB为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PBC点,若AC=4,PA=3,请补全图形,并求⊙O的半径.3、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).4、如图,在中,平分,与交于点,垂足为,与交于点,经过三点的交于点(1)求证的切线;(2)若,求的半径.5、如图,⊙OABC的外接圆,∠ABC=45°,OCADADBC的延长线于DABOCE(1)求证:AD是⊙O的切线;(2)若AE=CE=2,求⊙O的半径和线段BC的长. -参考答案-一、单选题1、B【解析】【分析】连接DGAG,作GHADH,连接OD,如图,先确定AGDG,则GH垂直平分AD,则可判断点OHG上,再根据HGBC可判定BC与圆O相切;接着利用OGOD可判断圆心O不是ACBD的交点;然后根据四边形AEFDO的内接矩形可判断AFDE的交点是圆O的圆心.【详解】解:连接DGAG,作GHADH,连接OD,如图,GBC的中点,CGBGCDBA,根据勾股定理可得,AGDGGH垂直平分AD∴点OHG上,ADBCHGBCBC与圆O相切;OGOD∴点O不是HG的中点,∴圆心O不是ACBD的交点;∵∠ADF=∠DAE90°,∴∠AEF90°,∴四边形AEFDO的内接矩形,AFDE的交点是圆O的圆心;AE=DF∴(1)错误,(2)(3(4)正确.故选:B【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.2、D【解析】【分析】连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得【详解】解:连接 BD是⊙O的切线故选D【点睛】本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.3、D【解析】【分析】根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.【详解】解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;D、三角形的外心到三角形的三个顶点的距离相等,故正确;故选D【点睛】本题考查了圆的有关的概念,属于基础知识,必须掌握.4、B【解析】【分析】根据确定圆的条件、三角形的内切圆、圆心角化和弧的关系、中心对称图形的概念判断.【详解】解:A、不在同一直线上的三点确定一个圆,故错误;B、任何三角形有且只有一个内切圆,正确;C、在同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、边数是偶数的正多边形一定是中心对称图形,故错误;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、C【解析】【分析】根据切线长定理可得,,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.【详解】解:FAFB分别与⊙O相切于AB两点,过点C的切线分别交FAFBDE两点,则:∵∠F=60°,为等边三角形,∵△FDE的周长为12,即,即,如下图:,则,由勾股定理可得:解得故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.6、D【解析】【分析】根据题意作出图形,根据垂径定理可得,设,则,分情况讨论求得最大值与最小值,即可解决问题【详解】解:如图,根据题意,折叠后的弧为为切点,设点所在的圆心,的半径相等,即,连接,设交于点根据折叠的性质可得,又则四边形是菱形,且,则则当取得最大值时,取得最小值,即取得最小值,取得最小值时,取得最大值,根据题意,当点于点重合时,四边形是正方形此时当点与点重合时,此时最小,故选D【点睛】本题考查了垂径定理,切线的性质,折叠的性质,勾股定理,分别求得的最大值与最小值是解题的关键.7、C【解析】【分析】先利用待定系数法求出直线的解析式,再把每点代入函数解析式,根据不在同一直线上的三点能确定一个圆即可得出答案.【详解】解:设直线的解析式为将点代入得:,解得则直线的解析式为A、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;B、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;C、当时,,则此时点在同一直线上,不可以确定一个圆,此项符合题意;D、当时,,则此时点不在同一直线上,可以确定一个圆,此项不符题意;故选:C.【点睛】本题考查了确定一个圆、求一次函数的解析式,熟练掌握确定一个圆的条件是解题关键.8、B【解析】【分析】根据三角形内心的性质得到∠OBC=ABC=25°,∠OCB=ACB=37°,然后根据三角形内角和计算∠BOC的度数.【详解】解:∵点OABC的内心,OB平分∠ABCOC平分∠ACB∴∠OBC=ABC=×50°=25°,∠OCB=ACB=×74°=37°,∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.故选B.【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.9、D【解析】【分析】半径为r,如解图,过点O,根据等腰三角形性质,根据四边形ABCD为矩形,得出∠C=90°=∠OFB,∠OBF=∠DBC,可证.得出,根据勾股定理,代入数据,得出,根据勾股定理在中,,即,根据的切线,利用勾股定理,解方程即可.【详解】解:设半径为r,如解图,过点OOB=OE∵四边形ABCD为矩形,∴∠C=90°=∠OFB,∠OBF=∠DBC中,,即又∵的切线,解得或0(不合题意舍去).故选D.【点睛】本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键.10、B【解析】【分析】圆的半径为 圆心O到直线l的距离为时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.【详解】解:O的直径为10cm,圆心O到直线l的距离为5cm,   O的半径等于圆心O到直线l的距离, 直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.二、填空题1、【解析】【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【详解】如图,连接BOOCOA由题意得:△BOC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,故答案为:【点睛】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是得出2、外【解析】【分析】点与圆心的距离d,则dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内.据此作答.【详解】解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm即点A到圆心的距离大于圆的半径,∴点A在⊙O外.故答案为:外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内.3、①②③【解析】【分析】根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【详解】解:如图, 的两条切线, 故①正确, 故②正确, 的两条切线, 的中点,连接,则 ∴以为圆心,为半径作圆,则共圆,故③正确, M外接圆的圆心, 与题干提供的条件不符,故④错误,综上:正确的说法是①②③.故填①②③.【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.4、##【解析】【分析】首先作PGAB,交AB所在直线于点G,则D1E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】解:如图,作PGAB,交AB所在直线于点GD1E1在以A为圆心,AD为半径的圆上,BD1所在直线与⊙A相切时,直线BD1CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,∵∠CAB=90°,AC=AB=4,DE分别是ABAC的中点,AD=AE1=AD1=PD1=2,BD1=故∠ABP=30°,PB=2+2PG=PB=故点PAB所在直线的距离的最大值为:PG=故答案为:【点睛】本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.5、70°##70度【解析】【分析】连接OAOB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OAOBPAPB分别切⊙O于点AB∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.三、解答题1、 (1)相切,理由见解析(2)【解析】【分析】(1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;(2)连接BD,根据勾股定理得到AD=2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.(1)解:所在直线与相切.理由:连接平分是半径,所在直线与相切.(2)解:连接的直径,又∵的半径为【点睛】本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.2、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点BBP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,AC=4,PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x解得x=故圆的半径为【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.3、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;(2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OCAB的直径,直线l相切于点A∴直线DC的切线.(2)解:∵又∵是等边三角形,中,∴阴影部分的面积=【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.4、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接是直径,的中点.平分又∵又∵经过半径的外端,的切线.(2)解:∵中,中,.设半径为,则的半径为【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.5、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交⊙OF,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA     ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°,     OAAD       OA是半径,AD是⊙O的切线.          (2)解:设⊙O的半径为R,则OA=ROE=R-2.RtOAE中,解得(不合题意,舍去),延长CO交⊙OF,连接AF∵∠AEF=∠CEB,∠B=∠AFE∴△CEB∽△AEF       CF是直径,CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,AF=     BC=     【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键. 

    相关试卷

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀习题:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀习题,共38页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。

    九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题:

    这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品复习练习题,共31页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    初中冀教版第29章 直线与圆的位置关系综合与测试精品同步训练题:

    这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品同步训练题,共36页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map