初中第30章 二次函数综合与测试练习
展开
这是一份初中第30章 二次函数综合与测试练习,共26页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、抛物线y=4(2x﹣3)2+3的顶点坐标是( )
A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)
2、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积,棱长xm
B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.高为14m的圆柱形储油罐的体积,底面圆半径xm
3、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
6、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
7、二次函数的图象如图所示,则下列结论正确的是( )
A.,, B.,, C.,, D.,,
8、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
9、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
A. B.
C. D.
10、抛物线,,的图象开口最大的是( )
A. B. C. D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将二次函数的图象先向左平移2个单位, 再向下平移5个单位, 则最终所得图象的函数表达式是____________.
2、二次函数的图象的顶点坐标为______.
3、如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;方程的一个解是;,其中所有正确的结论是__________.
4、用“描点法”画二次函数的图象时,列了如下表格:
……
0
1
2
……
……
6.5
……
当时,二次函数的函数值______
5、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数y=ax2﹣4ax+3a.
(1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;
(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请直接写出t的最大值.
2、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
(1)求该抛物线的函数表达式和顶点坐标;
(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
①求直线BC的解析式;
②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
3、已知二次函数y=a(x﹣1)2﹣3(a≠0)的图象经过点(2,0).
(1)求a的值.
(2)求二次函数图象与x轴的交点坐标.
4、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
(1)求证:b=0;
(2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
②求的值.
5、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.
(1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;
(2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?
(3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据顶点式的顶点坐标为求解即可
【详解】
解:抛物线的顶点坐标是
故选A
【点睛】
本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.
2、D
【解析】
【分析】
根据题意,列出关系式,即可判断是否是二次函数.
【详解】
A.由题得:,不是二次函数,故此选项不符合题意;
B.由题得:,不是二次函数,故此选项不符合题意;
C.由题得:,不是二次函数,故此选项不符合题意;
D.由题得:,是二次函数,故此选项符合题意.
故选:D.
【点睛】
本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
3、D
【解析】
【分析】
由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
【详解】
解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
∴Δ=42﹣4a×1≥0,且a≠0,
解得:a≤4,且a≠0.
故选:D.
【点睛】
本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
4、D
【解析】
【分析】
根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
【详解】
解:由势力的线与y轴正半轴相交可知c>0,
对称轴x=-<0,得b
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试练习,共36页。
这是一份冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共35页。
这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共32页。试卷主要包含了抛物线的顶点为,下列函数中,二次函数是等内容,欢迎下载使用。