搜索
    上传资料 赚现金
    英语朗读宝

    2022年冀教版九年级数学下册第三十章二次函数章节练习试卷

    2022年冀教版九年级数学下册第三十章二次函数章节练习试卷第1页
    2022年冀教版九年级数学下册第三十章二次函数章节练习试卷第2页
    2022年冀教版九年级数学下册第三十章二次函数章节练习试卷第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第30章 二次函数综合与测试习题

    展开

    这是一份2021学年第30章 二次函数综合与测试习题,共32页。试卷主要包含了二次函数y=ax2﹣4ax+c,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    2、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    3、二次函数的最大值是( )
    A. B. C.1 D.2
    4、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有(  )
    A.1个 B.2个 C.3个 D.4个
    5、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )

    A.
    B.当时,随的增大而增大
    C.
    D.是一元二次方程的一个根
    6、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )

    A. B. C. D.
    7、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    8、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    9、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
    A.x=-3 B.x=-1 C.x=2 D.x=3
    10、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,抛物线与轴交于点,,若对称轴为直线,点的坐标为(-3,0),则不等式的解集为______.

    2、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.
    3、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
    4、用“描点法”画二次函数的图象时,列了如下表格:

    ……


    0
    1
    2
    ……

    ……
    6.5




    ……
    当时,二次函数的函数值______
    5、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知抛物线与轴交于、两点,与轴交于点.

    (1)求抛物线的解析式;
    (2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;
    (3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.
    2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.

    3、如图1,抛物线C1: y=ax2+bx+2与x轴交于点A、B(3,0),与y轴交于点C,且过点D(2,2).

    (1)求二次函数表达式;
    (2)若点P为抛物线上第四象限内的点,且S△PBC=S△ABC,求点P的坐标;
    (3)如图2,将抛物线C1平移,得到的新抛物线C2,使点A的对应点为点D,抛物线C1的对称轴与两条抛物线C1,C2围成的封闭图形为M.直线l:y=kx+m(k≠0)经过点A.若直线l与图形M有公共点,求k的取值范围.
    4、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).

    (1)当为直角三角形时,求的面积
    (2)如图,当时,过点P作轴于点Q,求BQ的长.
    (3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
    5、已知:在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A、B,点B的坐标为(3,0),与y轴相交于点C.求:
    (1)抛物线的表达式及顶点坐标;
    (2)△ABC的面积.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
    【详解】
    解:抛物线的对称轴为:直线,
    ∵,
    当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
    2、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    3、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    4、C
    【解析】
    【分析】
    利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
    【详解】
    解: 抛物线y=mx2+4mx+m﹣2(m≠0),
    抛物线的对称轴为: 故①符合题意;


    当时,
    所以抛物线与轴有两个交点,故②不符合题意;
    当时,抛物线的开口向上,如图,

    则关于的对称点为: 而
    故③符合题意;
    当时,抛物线的开口向下,如图,

    同理可得:由
    则或 故④符合题意,
    综上:符合题意的有:①③④
    故选:C
    【点睛】
    本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
    5、D
    【解析】
    【分析】
    根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
    【详解】
    解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
    B、当时,随的增大而减小,故本选项结论错误;
    C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
    D、抛物线与轴的一个交点坐标是,对称轴是直线,
    设另一交点为,


    另一交点坐标是,
    是一元二次方程的一个根,
    故本选项结论正确.
    故选:D.
    【点睛】
    本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
    6、B
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
    B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
    故当时,,即,故B错误,符合题意;
    C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
    D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
    7、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    8、C
    【解析】
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    9、C
    【解析】
    【分析】
    一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
    【详解】
    解:一元二次方程的两个根分别是和5,
    则二次函数图象与轴的交点坐标为、,
    根据函数的对称性,函数的对称轴为直线,
    故选:C.
    【点睛】
    本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
    10、C
    【解析】
    【分析】
    根据平移的规律:左加右减,上加下减可得函数解析式.
    【详解】
    解:因为y=x2-2x+3=(x-1)2+2.
    所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
    故选:C.
    【点睛】
    本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
    二、填空题
    1、
    【解析】
    【分析】
    函数的对称轴为直线,与轴交点,则另一个交点,进而求解.
    【详解】
    解:函数的对称轴为直线,与轴交点,则另一个交点,
    观察函数图象知,不等式的解集为:,
    故答案为:.
    【点睛】
    本题考查了抛物线与轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
    2、
    【解析】
    【分析】
    根据向下平移,纵坐标要减去3,即可得到答案.
    【详解】
    解:抛物线向下平移3个单位,
    抛物线的解析式为.
    故答案为:.
    【点睛】
    主要考查了函数图象的平移,解题的关键是要求熟练掌握平移的规律:左加右减,上加下减.
    3、
    【解析】
    【分析】
    首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
    【详解】
    解:开口向下,
    中,
    与轴的交点纵坐标为3,

    抛物线的解析式可以为:(答案不唯一).
    故答案为:(答案不唯一).
    【点睛】
    本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
    4、-4
    【解析】
    【分析】
    由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.
    【详解】
    解:由表格可知当x=0和x=2时,y=-2.5,
    ∴抛物线的对称轴为x=1,
    ∴x=3和x=-1时的函数值相等,为-4,
    故答案为:-4.
    本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.
    5、
    【解析】
    【分析】
    根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
    【详解】
    ∵与x轴交于A,B两点(点A在点B左侧),
    令,则,
    解得:,.
    ∴A点坐标为(-1,0).
    ∵直线经过点A,
    ∴,
    解得:,
    ∴该直线解析式为.
    当时,直线解析式为,
    令,则,
    ∴的坐标为(0,n).
    联立,即,
    解得:,.
    ∴的横坐标为n+1.
    将代入中,得:,
    ∴的坐标为().




    故答案为:.
    【点睛】
    本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
    三、解答题
    1、 (1)
    (2)当时,有最大值,最大值是
    (3)点的坐标为,,,
    【解析】
    【分析】
    (1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;
    (2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;
    (3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.
    (1)
    解:∵抛物线与轴交于、两点,
    ∴设抛物线解析式为,
    将点坐标代入,得:,
    解得:,
    抛物线解析式为;
    (2)
    解:设直线的函数解析式为,
    ∵直线过点,,
    ∴,解得,
    ∴,
    设,,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∵轴,
    ∴,
    ∴,
    又∵,
    在中,
    ∴,
    ∵,
    ∴当时,有最大值,最大值是;
    (3)
    解:抛物线的对称轴为直线,
    设P(1,t),而B(3,0),C(0,3),
    ∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,
    ①当是斜边时,,解得:;
    ②当是斜边时,,解得:;
    ③当是斜边时,,
    整理,得:,解得:,
    故点的坐标为:,,,
    【点睛】
    本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.
    2、y=﹣x2﹣2x+3
    【解析】
    【分析】
    根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.
    【详解】
    解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),
    设抛物线的解析式为:y=a(x+3)(x﹣1),
    代入点(0,3),
    则3=a(0+3)(0﹣1),
    解得:a=﹣1,
    则抛物线的解析式为:y=﹣(x+3)(x﹣1),
    整理得到:y=﹣x2﹣2x+3.
    【点睛】
    本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.
    3、 (1)抛物线
    (2)
    (3)或
    【解析】
    【分析】
    (1)把点和点的坐标代入解析式,建立方程组求解即可;
    (2)过点作的平行线与抛物线的交点即为点,求出直线的解析式,令,求解即可;
    (3)根据题意可求出抛物线的对称轴即抛物线的解析式,并求出封闭图形的端点,点和点,根据一次函数的性质,可以求得的取值范围.()
    (1)
    解:抛物线过点,点,
    ,解得,
    抛物线;
    (2)
    由(1)可知,抛物线,
    抛物线的对称轴为直线,
    ,顶点坐标为,
    令,可得,

    直线的解析式为:,
    如图,过点作的平行线,交抛物线于点,点即为所求;

    直线的解析式为:,
    令,
    解得或0(舍去),


    (3)
    点到点,函数向右移动了3个单位,向上移动了2个单位,
    则抛物线的顶点为,即为,
    抛物线的解析式为:,


    当直线经过点,点时,
    ,解得,
    当直线经过点,点时,
    ,解得,
    结合图象可知,若直线与图形有公共点,的取值范围或.
    【点睛】
    本题属于二次函数综合题,主要涉及待定系数法求函数解析式,三角形的面积,数形结合思想,图象的平移等知识,(3)中求出点和点的坐标,利用数形结合思想得出结论是解题关键.
    4、 (1)4
    (2)2
    (3)或m=
    【解析】
    【分析】
    (1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
    (2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
    (3)先说明∠ABC=45°,然后分三种情况解答即可.
    (1)
    解:由抛物线开口向上,则m>0
    令x=0,则y=-2,即C点坐标为(0,-2),OC=2
    令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
    ∴OA=2,OB=m
    ∴AB=m+2
    由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
    ∵当为直角三角形时,仅有∠ACB=90°
    ∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
    ∴AB=m+2=4
    ∴的面积为:·AB·OC=×4×2=4.
    (2)
    解:设BC所在直线的解析式为:y=kx+b
    则 ,解得
    ∴BC所在直线的解析式为y=x-2
    设直线AP的解析式为y=x+c
    则有:0=×(-2)+c,即c=
    ∴线AP的解析式为y=x+
    联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
    ∴点P的纵坐标为:
    ∴点P的坐标为(m+2,)
    ∴OQ=m+2
    ∴BQ=OQ-OB= m+2-m=2.
    (3)
    解:∵点P为抛物线上一动点(点P不与点C重合).
    ∴设P(x,)
    ∵在△ABC中,∠BAC=45°
    ∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
    ①a.若△ABC∽△BAP

    又∵BP=AC
    ∴△ABC∽△BAP不符合题意;

    b. 若△ABP∽△BAC

    过P作PQ⊥x轴于点Q,则∠PQB=90°
    ∴∠BPQ=90°-∠PBQ=45°
    ∴PQ=BQ=m-x
    由于PQ=


    ∴x-m=0或
    ∴x=m(舍去),x=-m-2
    ∴BQ=m-(-m-2)=2m+2


    ∴m2-4m-4=0,解得:m=或m=(舍去)
    ∴m=;

    ②当∠PAB=∠BAC=45°时,分两种情况讨论:
    a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
    b. 若△ABP∽△BAC,则 ,
    过P作PQ⊥x轴于点Q,则∠PQA=90°
    ∴∠APQ=90°-∠PAB=45°
    ∴PQ=AQ=x+2
    由于PQ=


    ∴x+2=0或
    ∴x=-2(舍去),x=2m
    ∴AQ= =2m+2


    ∴m2-4m-4=0,解得:m=(舍去)或m=
    ∴m=;

    ③当∠APB=∠BAC=45°时,分两种情况讨论:
    a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
    ∵∠MAB≠∠PAB,
    ∴∠PAB≠∠ABC,
    ∴△PAB与△BAC不相似;

    b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
    ∵∠PBA≠∠NBA,
    ∴∠PBA≠∠CBA,
    ∴△PAB与△BAC不相似;

    综上,m的值为m=或m=.
    【点睛】
    本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.
    5、 (1)
    (2)3
    【解析】
    【分析】
    (1)把点的坐标代入抛物线,即可得出抛物线的表达式;
    (2)先求出,,,再利用三角形面积公式求解即可.
    (1)
    解:把点的坐标代入抛物线,
    得,
    解得,
    所以抛物线的表达式:;
    (2)
    解:抛物线的表达式,
    令时,,
    解得:,

    当,,



    【点睛】
    本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.

    相关试卷

    初中30.1 二次函数当堂达标检测题:

    这是一份初中30.1 二次函数当堂达标检测题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    数学九年级下册30.1 二次函数课时训练:

    这是一份数学九年级下册30.1 二次函数课时训练,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数30.1 二次函数一课一练:

    这是一份冀教版九年级下册第30章 二次函数30.1 二次函数一课一练,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map