![难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12720836/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12720836/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12720836/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试课后作业题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试课后作业题,共33页。试卷主要包含了若点A,一次函数与二次函数的图象交点等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )
A. B. C. D.
2、若函数,则当函数y=15时,自变量的值是( )
A. B.5 C.或5 D.5或
3、下列二次函数的图象中,顶点在第二象限的是( )
A. B.
C. D.
4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
7、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )
A. B.
C. D.
8、一次函数与二次函数的图象交点( )
A.只有一个 B.恰好有两个
C.可以有一个,也可以有两个 D.无交点
9、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
10、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某函数的图象经过,两点,下面有四个推断:
①若此函数的图象为直线,则此函数的图象与直线平行;
②若此函数的图象为双曲线,则也在此函数的图象上;
③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
所有合理推断的序号是______.
2、如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;方程的一个解是;,其中所有正确的结论是__________.
3、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.
4、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.
5、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.
三、解答题(5小题,每小题10分,共计50分)
1、红星公司销售自主研发的一种电子产品,已知该电子产品的生产成本为每件40元,规定销售单价不低于44元,且销售每件产品的利润率不能超过50%,试销售期间发现,当销售单价定为44元时,每月可售出300万件,销售单价每上涨1元,每月销售量减少10万件,现公司决定提价销售,设销售单价为x元,每月销售量为y元.
(1)请写出y与x之间的函数关系式和自变量x的取值范围;
(2)当电子产品的销售单价定为多少元时,公司每月销售电子产品获得的利润w最大?最大利润是多少万元?
(3)若公司要使销售该电子产品每月获得的利润不低于2400万元,则每月的销售量最多应为多少万件?
2、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过P作PE⊥x轴,垂足为点E.
(1)求抛物线的函数表达式;
(2)是否存在点P,使得以A、P、E为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;
(3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由.
3、如图,在平面直角坐标系中,抛物线y=ax2﹣x﹣4与x轴交于点A(4,0),与y轴交于点C.点B(12,0),联结BC.
(1)求该抛物线解析式;
(2)求∠ACB的正弦值;
(3)如图,点D为抛物线上一点,直线AD交y轴于点E,交线段BC于点F.若△ECA∽△EFC,求点D的坐标.
4、已知二次函数的图像经过点(1,4)和点(2,3).
(1)求这个二次函数的表达式;
(2)求该二次函数图像的顶点坐标.
(3)当x在什么范围内时,y随x的增大而减小?
5、如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.
(1)求抛物线的解析式;
(2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;
(3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
【详解】
解:A、由抛物线的开口向上知,
对称轴位于轴的右侧,
.
抛物线与轴交于负半轴,
,
;
故选项正确,不符合题意;
B、对称轴为直线,得,即,故选项正确,不符合题意;
C、如图,当时,,,故选项正确,不符合题意;
D、当时,,
,即,故选项错误,符合题意;
故选:D.
【点睛】
本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
2、D
【解析】
【分析】
根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
【详解】
解:当x<3时,
令2x2-3=15,
解得x=-3;
当x≥3时,
令3x=15,
解得x=5;
由上可得,x的值是-3或5,
故选:D.
【点睛】
本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
3、C
【解析】
【分析】
根据二次函数的顶点式求得顶点坐标,即可判断.
【详解】
解:A.二次函数的顶点为(1,3),在第一象限,不合题意;
B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;
C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;
D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;
故选:C.
【点睛】
本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
4、D
【解析】
【分析】
根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
【详解】
解:由势力的线与y轴正半轴相交可知c>0,
对称轴x=-<0,得b0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
二、填空题
1、①②④
【解析】
【分析】
分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
【详解】
解:①过,两点的直线的关系式为y=kx+b,则
,
解得,
所以直线的关系式为y=x-1,
直线y=x-1与直线y=x平行,
因此①正确;
②过,两点的双曲线的关系式为,则,
所以双曲线的关系式为
当时,
∴也在此函数的图象上,
故②正确;
③若过,两点的抛物线的关系式为y=ax2+bx+c,
当它经过原点时,则有
解得,
对称轴x=-,
∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
当->时,抛物线与y轴的交点在负半轴,
因此③说法不正确;
④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
所以对称轴x=-=-=-,
因此函数图象对称轴在直线x=左侧,
故④正确,
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
2、②⑤
【解析】
【分析】
由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,再由抛物线对称轴为直线,得到,即,即可判断①;根据抛物线的对称性可知抛物线过点,则当时,,由,可得,即可判断②;由抛物线对称轴为直线,且开口向上,则抛物线上的点,离对称轴水平距离越大,函数值越大,即可判断③;由cx2+bx+a=0,方程两边同时除以a得,再由方程的两个根分别为,,得到,,则即为,由此即可判断④;当对应的函数值为,
当对应的函数值为,又时函数取得最小值,则,由此即可判断⑤.
【详解】
解:由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,
∵抛物线对称轴为直线,
∴,即,
,故①错误;
抛物线过点,且对称轴为直线,
抛物线过点,
当时,,
,
∴,故②正确;
抛物线对称轴为直线,且开口向上,
∴抛物线上的点,离对称轴水平距离越大,函数值越大,
∵点(4,)与直线的距离为3,点(-3,)与直线的距离为4,
,故③错误;
∵cx2+bx+a=0
∴方程两边同时除以a得,
∵方程的两个根分别为,,
∴,,
∴即为,
∴
解得或,故④错误;
当对应的函数值为,
当对应的函数值为,
又时函数取得最小值,
∴,
∴,
又∵,
∴,
∴,故⑤正确.
故答案为:②⑤.
【点睛】
本题主要考查了二次函数图像与其系数的关系,解一元二次方程,一元二次方程根与系数的关系,二次函数图像的性质等等,熟知相关知识是解题的关键.
3、(,)
【解析】
【分析】
设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
【详解】
解:∵点A是抛物线图像上一点
故设A(x,x2),
∵将点A向下平移2个单位到点B,
故B(x,x2-2)
∵把A绕点B顺时针旋转120°得到点C,如图,
过点B作BD⊥AB于B,过点C作CD⊥BD于D,
AB=BC=2,∠ABC=120°,∠ABD=90°,
∴∠DBC=30°
故CD=,BD=,
故C(x+,x2-3),
把C(x+,x2-3)代入,
∴x2-3=(x+)2,
解得x=-
∴A(-,3)
故答案为:(,3).
【点睛】
此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
4、
【解析】
【分析】
利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
【详解】
解:作QM⊥y轴于点M,Q′N⊥y轴于N,
∵∠PMQ=∠PNQ′=∠QPQ′=90°,
∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
∴∠QPM=∠PQ′N,
在△PQM和△Q′PN中,
,
∴△PQM≌△Q′PN(AAS),
∴PN=QM,Q′N=PM,
设Q(m,m+3),
∴PM=|m+2|,QM=|m|,
∴ON=|1-m|,
∴Q′(m+2,1−m),
∴OQ′2=(m+2)2+(1−m)2=m2+5,
当m=0时,OQ′2有最小值为5,
∴OQ′的最小值为,
故答案为:.
【点睛】
本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
5、
【解析】
【分析】
将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.
【详解】
解:将代入中得到:,
解得,
∴抛物线的对称轴为直线,且开口向上,
根据“自变量离对称轴越远,其对应的因变量越大”可知,
当时,对应的最大为:,
当时,对应的最小为:,
故n的取值范围为:,
故答案为:.
【点睛】
本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.
三、解答题
1、 (1)();
(2)销售单价为57元时,最大利润为2890万元;
(3)240
【解析】
【分析】
(1)用300减去减少的数量即可得到函数解析式,根据利润率不能超过50%求出自变量的取值范围;
(2)根据利润率公式得出函数解析式,由函数的性质得到最值;
(3)当w=2400时,解方程,求出解,得到使销售该电子产品每月获得的利润不低于2400万元,, 根据一次函数的性质求出销售量的最大值.
(1)
解: ,
∵,
∴,
∴();
(2)
解:,
当x
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练,共31页。试卷主要包含了二次函数的最大值是,若二次函数y=a等内容,欢迎下载使用。
这是一份2021学年第30章 二次函数综合与测试达标测试,共31页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。