![2021-2022学年冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12719229/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12719229/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12719229/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版第十一章 因式分解综合与测试同步练习题
展开
这是一份冀教版第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了把多项式分解因式,其结果是,下列因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把多项式a2﹣9a分解因式,结果正确的是( )A.a(a+3)(a﹣3) B.a(a﹣9)C.(a﹣3)2 D.(a+3)(a﹣3)2、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除3、下列各式中,不能因式分解的是( )A.4x2﹣4x+1 B.x2﹣4y2C.x3﹣2x2y+xy2 D.x2+y2+x2y24、下列各式中,能用完全平方公式分解因式的是( )A. B.C. D. 5、下列从左边到右边的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z6、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+17、把多项式分解因式,其结果是( )A. B.C. D.8、下列因式分解正确的是( )A. B.C. D.9、下列式子从左到右的变形中,属于因式分解的是( )A. B.C. D.10、已知,,那么的值为( )A.3 B.5 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:2a2-4a-6=________.2、分解因式:________.(直接写出结果)3、分解因式:5x4﹣5x2=________________.4、在实数范围内因式分解:x2﹣6x+1=_____.5、分解因式:(a+b)2﹣(a+b)=_______.三、解答题(5小题,每小题10分,共计50分)1、 ((1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x﹣2y)(3x+2y)﹣;(3)9(x﹣y)+4(y﹣x) ; (4) a+2x+. 2、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1(1)求M(8);M(24);M[(c+1)2]的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值.3、阅读下列材料:根据多项式的乘法,我们知道,.反过来,就得到的因式分解形式,即.把这个多项式的二次项系数1分解为,常数项10分解为,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把,分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数(如图1).像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.例如,将二次三项式分解因式,它的“十字”如图2:所以,.请你用十字相乘法将下列多项式分解因式:(1) ;(2) ;(3) .4、分解因式:(1) (2)5、分解因式:x3y﹣2x2y2+xy3. -参考答案-一、单选题1、B【解析】【分析】用提公因式法,提取公因式即可求解.【详解】解:a2﹣9a=a(a﹣9).故选:B.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.2、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.3、D【解析】【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;D、x2+y2+x2y2不能因式分解,故本选项符合题意;故选:D.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.4、D【解析】【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.5、C【解析】【分析】根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.【详解】解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;B、,原式错误,不符合题意;C、x2﹣x=x(x﹣1),属于因式分解,符合题意;D、2yz﹣y2z+z=,原式分解错误,不符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.6、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.7、B【解析】【分析】因为−6×9=−54,−6+9=3,所以利用十字相乘法分解因式即可.【详解】解:x2+3x−54=(x−6)(x+9);故选:B.【点睛】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.8、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、B【解析】【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.10、D【解析】【分析】将多项式进行因式分解,再整体代入求解即可.【详解】解:,将,,代入可得:,故选:D.【点睛】本题考查因式分解,整体代入思想,能够熟练地将整式因式分解是解决此类题型的关键.二、填空题1、2(a-3)(a+1)## 2(a+1)(a-3)【解析】【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.2、2(x-a)(4a-2b-3c)【解析】【分析】提出公因式2(x-a)即可求得结果【详解】解:2(x-a)(4a-2b-3c)故答案为:2(x-a)(4a-2b-3c)【点睛】本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.3、5x2(x+1)(x-1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式.【详解】解:5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1).故答案为:5x2(x+1)(x-1).【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.4、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、##【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案.【详解】解:(a+b)2﹣(a+b)=(a+b)(a+b﹣1).故答案为:(a+b)(a+b﹣1).【点睛】此题主要考查因式分解,解题的关键是熟知提公因式法的运用.三、解答题1、(1)-5;(2)2﹣8;(3);(4)a【解析】【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可.【详解】解:(1) =2+1-9+1=-5;(2)(x﹣2y)(3x+2y)﹣=3+2xy﹣6xy﹣4﹣+4xy﹣4=2﹣8;(3)9(x﹣y)+4(y﹣x)= =;(4)a+2x+=a(+2ax+)=a.【点睛】本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.2、(1);;1;(2);【解析】【分析】(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.【详解】解:(1)由题意得,M(8)==;M(24)==;M[(c+1)2]=;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,∵x,y都是自然数,且1≤x≤y≤9,∴满足条件的“吉祥数”有15、24、33∴M(15)=,M(24)==,M(33)=,∵>>,∴所有“吉祥数”中M(d)的最大值为.【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.3、 (1)(x+2)(x+3)(2)(2x-1)(x-3)(3)(x+2)(x-m)【解析】【分析】根据阅读材料中的十字相乘法即可得出答案.(1)解: 由上图可知:x2+5x+6=(x+2)(x+3),故答案为:(x+2)(x+3);(2)解:由上图可知:2x2-7x+3=(2x-1)(x-3),故答案为:(2x-1)(x-3);(3)解:由上图可知:x2+(2-m)x-2m=(x+2)(x-m),故答案为:(x+2)(x-m).【点睛】本题考查了十字相乘法因式分解,关键是读懂材料掌握十字相乘的基本步骤.4、(1);(2)【解析】【分析】(1)先提公因式-3,再利用完全平方公式分解;(2)先提公因式(x-y),再利用平方差公式分解因式.【详解】解:(1)==(2)===.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.5、【解析】【分析】先提取公因式,再运用完全平方公式分解即可.【详解】解:x3y﹣2x2y2+xy3==.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解,注意:分解要彻底.
相关试卷
这是一份初中数学第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了下列各式因式分解正确的是,下列分解因式正确的是等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了若a,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后练习题,共16页。试卷主要包含了对于有理数a,b,c,有,因式分解,分解因式2a2等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)