搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选含答案)

    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选含答案)第1页
    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选含答案)第2页
    2022年最新精品解析冀教版七年级数学下册第十一章 因式分解章节训练试卷(精选含答案)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十一章 因式分解综合与测试随堂练习题

    展开

    这是一份初中数学第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了下列各式因式分解正确的是,下列分解因式正确的是等内容,欢迎下载使用。
    冀教版七年级数学下册第十一章 因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,不能因式分解的是(  )A.4x2﹣4x+1 B.x2﹣4y2C.x3﹣2x2y+xy2 D.x2+y2+x2y22、下列多项式中,能用完全平方公式分解因式的是(  )A.a2+4 B.x2+6x+9 C.x2﹣2x﹣1 D.a2+ab+b23、不论xy取何实数,代数式x2-4xy2-6y+13总是(       A.非负数 B.正数 C.负数 D.非正数4、下列从左到右的变形,是因式分解的是(       A.(x+4)(x﹣4)=x2﹣16 B.x2x﹣6=(x+3)(x﹣2)C.x2+1=xx D.a2bab2abab5、下列各式因式分解正确的是(            A. B.C. D.6、下列各式中从左到右的变形,是因式分解的是(       A. B.C. D.7、下列分解因式正确的是(       A. B.C. D.8、可以被24和31之间某三个整数整除,这三个数是(       A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,309、下列各式中,从左到右的变形是因式分解的是(       A. B.C. D.10、下列因式分解中,正确的是(       A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式_________.2、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.3、因式分解:-x+xyy=________.4、分解因式:__________.5、分解因式:=__________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)(2)2、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y原式 =yy+2)+1        (第一步)=y2+2y+1             (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的(             A.提取公因式                                 B.平方差公式C.两数和的完全平方公式                 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后?       .(填“是”或“否”)如果否,直接写出最后的结果            (3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.3、(1)计算:(2)计算:(3)因式分解:(4)因式分解:4、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,ba的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为     ;130的“十字点”为     (2)若ba的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a5、因式分解(1)n2m﹣2)﹣n(2﹣m(2)(a2+4)2﹣16a2 -参考答案-一、单选题1、D【解析】【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;C、x3﹣2x2y+xy2=xx-y2,故本选项不合题意;D、x2+y2+x2y2不能因式分解,故本选项符合题意;故选:D.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.2、B【解析】【分析】根据完全平方公式分解因式法解答.【详解】解:x2+6x+9=(x+32故选:B【点睛】此题考查了利用完全平方公式分解因式,掌握该方法分解的多项式的特点:共三项,其中有两项为平方项,第三项为这两项底数的积的2倍.3、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4xy2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.4、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.5、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A、不能进行因式分解,错误;B、选项正确,是因式分解;C、选项是整式的乘法,不是因式分解,不符合题意;D、,选项因式分解错误;故选:B.【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.6、B【解析】【分析】因式分解的结果是几个整式的积的形式.【详解】解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;B.从左到右的变形是因式分解,故本选项符合题意;C. ,故本选项不符合题意;D.,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.8、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.9、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解.       D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.10、D【解析】【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式,不符合题意;B、原式,不符合题意;C、原式不能分解,不符合题意;D、原式,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.二、填空题1、【解析】【分析】直接提取公因式m,进而分解因式得出答案.【详解】解:=mm+6).故答案为:mm+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2、【解析】【分析】利用十字相乘法分解因式即可.【详解】解:故答案为:【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:3、【解析】【分析】综合利用提公因式法和完全平方公式进行因式分解即可得.【详解】解:原式故答案为:【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.4、【解析】【分析】没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【详解】解:故答案为:【点睛】本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.5、##()(2- x)(2+x【解析】【分析】观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.【详解】解:故答案为:【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.三、解答题1、(1);(2)【解析】【分析】(1)先提公因数3,再利用完全平方公式公式分解因式即可;(2)先提公因式(m-2),再利用平方差公式分解因式即可.【详解】解:(1)==(2)==【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,熟练掌握因式分解的方法是解答的关键.2、(1)C;(2)否,;(3)【解析】【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可.【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式  故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,∴分解分式的结果为:故答案为:否,(3)设 【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.3、(1)(2)(3)(4)【解析】【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可.【详解】解:(1)(2)==(3)(4)===【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算.4、解:原式=5xx24xy+4y2)=5xx2y【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.2.(1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据ba的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)ba的十字点,a=(b+1)(b﹣2)(b>2且为正整数),a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,a能被(b﹣1)整除,∴(b﹣1)能整除2,b﹣1=1或b﹣1=2,b>2,b=3,a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.5、(1)nm﹣2)(n+1);(2)(a+2)2a﹣2)2【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可.【详解】(1)n2m﹣2)﹣n(2﹣mn2m﹣2)+nm﹣2)nm﹣2)(n+1);(2)(a2+4)2﹣16a2=(a2+4)2﹣(4a2=(a2+4a+4)(a2﹣4a+4)=(a+2)2a﹣2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底. 

    相关试卷

    冀教版七年级下册第十一章 因式分解综合与测试课后作业题:

    这是一份冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列分解因式正确的是,多项式分解因式的结果是,把多项式分解因式,其结果是,下列因式分解错误的是等内容,欢迎下载使用。

    2021学年第十一章 因式分解综合与测试综合训练题:

    这是一份2021学年第十一章 因式分解综合与测试综合训练题,共15页。试卷主要包含了因式分解,当n为自然数时,,已知x,y满足,则的值为,已知x2+x﹣6=等内容,欢迎下载使用。

    2020-2021学年第十一章 因式分解综合与测试课时作业:

    这是一份2020-2021学年第十一章 因式分解综合与测试课时作业,共17页。试卷主要包含了已知x,y满足,则的值为,下列因式分解中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map