冀教版七年级下册第十一章 因式分解综合与测试当堂检测题
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试当堂检测题,共16页。试卷主要包含了下列多项式不能因式分解的是,计算的值是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中能用平方差公式计算的是( )A.(x+y)(y﹣x) B.(x+y)(y+x)C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)2、下列各式从左到右进行因式分解正确的是( )A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)3、下列因式分解正确的是( )A. B.C. D.4、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.5、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.6、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,307、下列多项式不能因式分解的是( )A. B. C. D.8、计算的值是( )A. B. C. D.29、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)10、把分解因式的结果是( ).A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x=4,a+b=-3时,代数式:ax+bx的值为________.2、因式分解:_________.3、分解因式:mx2﹣4mx+4m=________.4、把多项式a3﹣9ab2分解因式的结果是 _____.5、因式分解:=_________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:.2、因式分解:(1) (2)3、因式分解:(1); (2).4、在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568_____(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.5、分解因式:2a2-8ab+8b2. -参考答案-一、单选题1、A【解析】【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【详解】解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;故选A.【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.2、B【解析】【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可【详解】解:A. 4a2﹣4a+1=,故该选项不符合题意;B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.【详解】解: A选项的右边不是积的形式,不是因式分解,故不符合题意;B选项的右边不是积的形式,不是因式分解,故不符合题意;C选项的右边不是积的形式,不是因式分解,故不符合题意;D选项的右边是积的形式,是因式分解,故符合题意,故选:D.【点睛】本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.5、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.7、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A、不能因式分解,符合题意;B、=,能因式分解,不符合题意;C、=,能因式分解,不符合题意;D、 =,能因式分解,不符合题意,故选:A.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.8、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:.故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.10、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.二、填空题1、-12【解析】【分析】本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.【详解】解:∵x=4,a+b=-3∴ax+bx故答案为:-12【点睛】本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.2、【解析】【分析】原式提取公因式y2,再利用平方差公式分解即可.【详解】解:原式==,故答案为:.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.3、m(x-2)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=m(x2-4x+4)=m(x-2)2,故答案为:.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、a(a+3b)(a-3b)【解析】【分析】根据题意直接提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:a3-9ab2=a(a2-9b2)=a(a+3b)(a-3b).故答案为:a(a+3b)(a-3b).【点睛】本题主要考查提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题的关键.5、【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题1、.【解析】【分析】利用“两两”分组法进行因式分解.【详解】解:原式.【点睛】本题主要考查了非负数的性质和分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题采用了两两分组法.2、(1);(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.3、(1);(2).【解析】【分析】(1)提取公因式,进行因式分解;(2)提取公因式后,再利用平方差公式进行因式分解.【详解】解:(1);(2),.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及公式法进行因式分解.4、 (1)是,所有符合条件的N的值为5326,5662(2)见解析【解析】【分析】(1)分别得出31568的“顺数”与“逆数”,求差,计算能否被17整除即可判断;设“最佳拍档数”N的十位数字为x,百位数字为y,可用x、y表示出N,根据“顺数”与“逆数”的定义可表示出“顺数”与“逆数”的差为90(66﹣x﹣10y),根据“最佳拍档数”的定义可得90(66﹣x﹣10y)能被17整除,即可得出符合题意x、y的值,即可得答案;(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,可表示出“顺数”与“逆数”的差,可判断差能否被30整除;同理可判断四位正整数“顺数”与“逆数”的差能否被30整除,综上即可得答案.(1)(1)31568的“顺数”为361568,31568的“逆数”为315668,(361568-315668)÷17=2700;∴31568是“最佳拍档数”,设“最佳拍档数”N的十位数字为x,百位数字为y,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+3﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+2﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,能被17整除;∴十位数字为2,百位数②x=6,y=6时,能被17整除;综上,所有符合条件的N的值为5326,5662故答案为:是(2)(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,∴任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点睛】本题考查“顺数”、“逆数”与“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,正确分解因式是解题关键.5、2(a-2b)2【解析】【分析】先提取公因式2,再利用完全平方公式因式分解.【详解】解:2a2-8ab+8b2=2(a2-4ab+4b2)=2(a-2b)2.【点睛】本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
相关试卷
这是一份初中数学第十一章 因式分解综合与测试达标测试,共17页。试卷主要包含了下列分解因式正确的是,分解因式2a2,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课堂检测,共18页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学第十一章 因式分解综合与测试同步训练题,共19页。试卷主要包含了已知实数x,y满足,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。