数学七年级下册第十一章 因式分解综合与测试同步练习题
展开
这是一份数学七年级下册第十一章 因式分解综合与测试同步练习题,共17页。试卷主要包含了下列因式分解正确的是.等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.2、当n为自然数时,(n+1)2﹣(n﹣3)2一定能( )A.被5整除 B.被6整除 C.被7整除 D.被8整除3、下列因式分解正确的是( )A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)4、下列因式分解正确的是( ).A. B.C. D.5、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)6、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.7、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学8、把多项式因式分解得,则常数,的值分别为( )A., B.,C., D.,9、下列各式从左到右的变形中,属于因式分解的是( )A. B.C. D.10、下列多项式不能因式分解的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式a3﹣4a可因式分解为_____.2、分解因式:5x4﹣5x2=________________.3、分解因式:=______.4、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.5、因式分解:4x2y2﹣2x3y=______.三、解答题(5小题,每小题10分,共计50分)1、若一个正整数a可以表示为a=(b+1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.2、因式分解(1)(2)3、分解因式:.4、分解因式:(1);(2).5、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:(1)①,②,③,④中,属于神奇对称式的是_______(填序号);(2)已知.①若,则神奇对称式_______;②若,求神奇对称式的最小值. -参考答案-一、单选题1、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).2、D【解析】【分析】先把(n+1)2﹣(n﹣3)2分解因式可得结果为:从而可得答案.【详解】解: (n+1)2﹣(n﹣3)2 n为自然数所以(n+1)2﹣(n﹣3)2一定能被8整除,故选D【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解题的关键.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C.【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.5、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.6、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.【详解】解: A选项的右边不是积的形式,不是因式分解,故不符合题意;B选项的右边不是积的形式,不是因式分解,故不符合题意;C选项的右边不是积的形式,不是因式分解,故不符合题意;D选项的右边是积的形式,是因式分解,故符合题意,故选:D.【点睛】本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.7、C【解析】【分析】利用平方差公式,将多项式进行因式分解,即可求解.【详解】解:∵、、、依次对应的字为:科、爱、我、理,∴其结果呈现的密码信息可能是我爱理科.故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.8、A【解析】【分析】根据因式分解是恒等式,展开比较系数即可.【详解】∵=,∴=,∴n-2=5,m=-2n,∴n=7,m=-14,故选A.【点睛】本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.9、B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:、是单项式的乘法,不是因式分解,故本选项不符合题意;、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意; 、是整式的乘法,不是因式分解,故本选项不符合题意;、因式分解错误,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、A【解析】【分析】根据平方差公式、完全平方公式分解因式即可.【详解】解:A、不能因式分解,符合题意;B、=,能因式分解,不符合题意;C、=,能因式分解,不符合题意;D、 =,能因式分解,不符合题意,故选:A.【点睛】本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.二、填空题1、【解析】【分析】利用提公因式法、公式法进行因式分解即可.【详解】解:原式=,故答案为:.【点睛】本题考查提公因式法、公式法分解因式,掌握公式的结构特征是正确应用的前提.2、5x2(x+1)(x-1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式.【详解】解:5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1).故答案为:5x2(x+1)(x-1).【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.3、##【解析】【分析】根据公式法因式分解即可【详解】解:=故答案为:【点睛】本题考查了公式法分解因式,掌握公式法因式分解是解题的关键.4、﹣2ab(2a﹣b)2【解析】【分析】先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式=﹣2ab(4a2﹣4ab+b2)=﹣2ab(2a﹣b)2,故答案为:﹣2ab(2a﹣b)2.【点睛】本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.5、2x2y(2y-x)【解析】【分析】直接提取公因式2x2y,进而分解因式即可.【详解】解:4x2y2-2x3y=2x2y(2y-x).故答案为:2x2y(2y-x).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.三、解答题1、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.2.(1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)∵b是a的十字点,∴a=(b+1)(b﹣2)(b>2且为正整数),∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,∵a能被(b﹣1)整除,∴(b﹣1)能整除2,∴b﹣1=1或b﹣1=2,∵b>2,∴b=3,∴a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.2、(1);(2)【解析】【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.3、【解析】【分析】先提取公因式y,再根据平方差公式进行二次分解即可求得答案.【详解】解:故答案为:.【点睛】本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.4、(1);(2)【解析】【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解.【详解】解:(1)原式.(2)原式.【点睛】本题考查了因式分解,熟练掌握先提后用公式的分解顺序是解题的关键.5、 (1)①④(2)①;②【解析】【分析】(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.(1)解:将①②③中交换位置可得①,符合题意;②,不符合题意;③,不符合题意;④交换的位置,同理交换其他两个仍成立,符合题意;故答案为:①④.(2)解:①或代入得故答案为:.②,有或∴神奇对称式的最小值为.【点睛】本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为,下列多项式等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试课后作业题,共19页。试卷主要包含了因式分解,下列因式分解正确的是,已知c<a<b<0,若M=|a,把分解因式的结果是.等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了下列变形,属因式分解的是,把多项式分解因式,其结果是,下列各式从左至右是因式分解的是等内容,欢迎下载使用。