初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后作业题,共24页。
冀教版七年级下册第七章相交线与平行线综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°2、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )A.60° B.50° C.45° D.30°3、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠DOE=36°,则∠BOC的度数为( )A.72° B.90° C.108° D.144°4、如图,下列给定的条件中,不能判定的是( )A. B. C. D.5、下面的四个图形中,能够通过基本图形平移得到的图形有( )A.1个 B.2个 C.3个 D.4个6、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.7、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°8、如图,将木条a,b与c钉在一起,∠1=100°,∠2=60°.要使木条a与b平行,木条a顺时针旋转的度数至少是( )A.10° B.20° C.30° D.40°9、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°10、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知DE∥BC,∠ABC=70°,那么直线AB与直线DE的夹角等于 ___度.2、数学课上,老师要求同学们利用三角板画两条平行线.如图,小华的画法;①将含角三角尺的最长边与直线重合,用虚线作出一条最短边所在直线;②再次将含角三角尺的最短边与虚线重合,画出最长边所在直线,则.你认为他画图的依据是__.3、如图,从人行横道线上的点P处过马路,下列线路中最短的是线路________,理由是________.4、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.5、如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.三、解答题(5小题,每小题10分,共计50分)1、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,,则与的关系是 ;(2)如图2所示,,,则与的关系是 ;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?2、如图,,,,,与相交于点.(1)求证:;(2)求的度数.3、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).4、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °5、完成下面的推理过程.已知:如图,,CD平分,EF平分.试说明:.证明:∵,∴ ( ).∵CD平分,EF平分,∴ , .∴ .( )∴( ). -参考答案-一、单选题1、D【解析】【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.2、A【解析】略3、A【解析】【分析】由角平分线的定义可求得∠AOD的度数,由对顶角相等即可求得结果.【详解】∵OE平分∠AOD,∴∠AOD=2∠DOE=2×36°=72°,∵∠BOC与∠AOE是对顶角,∴∠BOC的度数为72°,故选:A【点睛】本题考查了角平分线的定义、对顶角相等等知识,掌握这两个知识是解题的关键.4、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.5、B【解析】【分析】根据平移的性质,对逐个选项进行分析即可.【详解】解:第一个、第二个图不能由基本图形平移得到,第三个、第四个图可以由基本图形平移得到,故选:B.【点睛】本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.6、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7、B【解析】【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.8、B【解析】【分析】由平行线的性质可求解旋转后的∠1的对顶角为120°,将其与∠1的原角度相比较即可求解.【详解】解:如图,当时,∠2+∠3=180°∵∠2=60°∴∠3=120°∵∠1=∠3∴∠1=120°∵现在木条a与木条c的夹角∠1=100°∴木条a顺时针旋转的度数至少是120°﹣100°=20°故选:B.【点睛】本题考查了对顶角,平行线的性质.解题的关键在于确定角度之间的数量关系.9、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.10、B【解析】【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.二、填空题1、70或110##110或70【解析】【分析】先根据平行线的性质,求得∠AFE的度数,再根据邻补角的定义,即可得到∠AFD的度数.【详解】解:如图,直线AB和DE相交于点F,∵BC∥DE,∠ABC=70°,∴∠AFE=∠ABC=70°,∠AFD=180°-∠AFE=110°,∴直线AB、DE的夹角是70°或110°.故答案为:70或110.【点睛】本题主要考查了平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.2、内错角相等,两直线平行【解析】【分析】根据画图的步骤,2个60°的角是内错角,根据平行线的判定即可求得答案【详解】解:画图的依据是内错角,相等两直线平行.故答案为:内错角相等,两直线平行【点睛】本题考查了画平行线,掌握平行线的判定定理是解题的关键.3、 PC 垂线段最短【解析】【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC,故答案为:PC.【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.4、故答案为: 【点睛】本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.75.【解析】【分析】直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.【详解】解:∵OA⊥OB,∴∠AOB=90°,∴∠1+∠2=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故答案为:34°44′.【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.5、4【解析】【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF即可得出答案.【详解】解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵S△ABC=×AB×CN,∴CN=4,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥4,即CF+EF的最小值是4.方法二:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴点C与点B关于AD对称,过B作BE⊥AC于E,交AD于F,连接CF,则此时,CF+EF的值最小,且最小值为BE,∵S△ABC=•AC•BE=10,∴BE=4,∴CF+EF的最小值4,故答案为:4.【点睛】本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取E或C对称点连接是解题的关键.三、解答题1、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.,.,..故答案为:.(2),.,..故答案为:.(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是、,且.,...这两个角分别为、. 图1 图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.2、 (1)见解析(2)54°【解析】【分析】(1)由平行线的性质可得,等量代换可得,从而,然后根据根据平行线的传递性可证结论成立;(2)过点G作GM∥AB,由平行线的性质可得∠DCG=∠CGM,再由已知条件及角的和差关系可得答案.(1)证明:,,,,∴,,,.(2)解:如图,过点作,,由(1)知,,,,,,,,,,,即.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.3、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【解析】【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.4、(1)120;150;(2)30°;(3)30,=;(4)150;30.【解析】【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.5、DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.【解析】【分析】依据平行线的性质以及角平分线的定义,即可得到∠1=∠2,进而判定CD∥EF.【详解】证明:∵AC∥DE,∴∠ACB=∠DEB(两直线平行,同位角相等),∵CD平分∠ACB,EF平分∠DEB,∴,,∴∠1=∠2,(等量代换)∴CD∥EF(同位角相等,两直线平行).故答案为:DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
相关试卷
这是一份初中冀教版第七章 相交线与平行线综合与测试练习题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,下列A,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试练习,共20页。试卷主要包含了下列说法正确的有,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试当堂检测题,共22页。试卷主要包含了下列说法中正确的有,下列说法正确的是等内容,欢迎下载使用。