初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试习题,共22页。试卷主要包含了下列命题中,为真命题的是,生活中常见的探照灯,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°2、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°3、已知直线mn,如图,下列哪条线段的长可以表示直线与之间的距离( )A.只有 B.只有 C.和均可 D.和均可4、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°5、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等6、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.7、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°8、如果∠A的两边分别垂直于∠B的两边,那么∠A和∠B的数量关系是( )A.相等 B.互余或互补 C.互补 D.相等或互补9、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'10、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.2、如果两条直线都与第三条直线平行,那么这两条直线互相__________.几何语言表示:∵a∥c , c∥b(已知)∴__________∥__________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的________.4、下列命题,①对顶角相等;②两直线平行,同位角相等;③平行四边形的对角相等.其中逆命题是真命题的命题共有__个.5、下列说法:①对顶角相等;②两点之间的线段是两点间的距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤一个锐角的补角一定比它的余角大90°,正确的有______.(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中每个小正方形的边长为1,点A、B、C均为格点.(1)根据要求画图:①过点C画;②过点C画,垂足为D;(2)图中线段______的长度表示点A到直线CD的距离;(3)比较线段CA、CD的大小关系是______.2、已知:如图,,,.求证:平分.3、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( )4、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD( )∵MN∥AB,∴∠A=( )( )∵MN∥CD,∴∠D= ( )∴∠AGD=∠AGM+∠DGM=∠A+∠D.【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.5、已知:如图,中,点、分别在、上,交于点, ,.(1)求证:;(2)若平分,,求的度数. -参考答案-一、单选题1、D【解析】【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.2、D【解析】【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.3、C【解析】【分析】由平行线之间的距离的定义判定即可得解.【详解】解:从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两条平行线之间的距离,线段和都可以示直线与之间的距离,故选:C.【点睛】本题考查了平行线之间的距离,解题的关键是熟记平行线之间的距离的概念.4、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.5、D【解析】【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.6、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7、C【解析】【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.8、D【解析】【分析】由题意直接根据∠A的两边分别垂直于∠B的两边画出符合条件的图形进行判断即可.【详解】解:BD⊥AD,CE⊥AB,如图:∵∠A=90°﹣∠ABD=∠DBC,∴∠A与∠DBC两边分别垂直,它们相等,而∠DBE=180°﹣∠DBC=180°﹣∠A,∴∠A与∠DBE两边分别垂直,它们互补,故选:D.【点睛】本题考查垂线及角的关系,解题关键是根据已知画出符合条件的图形.9、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.10、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.二、填空题1、68【解析】【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.2、 平行 a b【解析】略3、距离【解析】略4、【解析】【分析】先根据互逆命题写出三个命题的逆命题,然后分别根据对顶角的定义、平行四边形的判定定理和平行线的判定定理进行判断.【详解】解:对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;两直线平行,同位角相等的逆命题为同位角相等,两直线平行,此逆命题为真命题;平行四边形的对角相等的逆命题为对角相等的四边形是平行四边形,此逆命题为假命题.故答案为:1.【点睛】本题考查了命题与命题:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.5、①⑤【解析】【分析】根据对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质可直接进行求解.【详解】解:①对顶角相等,原说法正确;②两点之间的线段长度是两点间的距离,原说法错误;③过直线外一点有且只有一条直线与已知直线平行,原说法错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,原说法错误;⑤一个锐角的补角一定比它的余角大90°,原说法正确;综上所述:正确的有①⑤;故答案为①⑤.【点睛】本题主要考查对顶角、线段、直线、垂直的定义、平行线的性质及余补角的性质,熟练掌握相关概念及性质是解题的关键.三、解答题1、 (1)见解析(2)AD(3)CA大于CD【解析】【分析】(1)根据题意画图即可;(2)根据点A到直线CD的距离是垂线段AD长,即可填空;(3)根据垂线段最短即可填空.(1)解:①如图所示,直线即为所求②直线EF和点D即为所求;(2)解:点A到直线CD的距离是垂线段AD长,故答案为:AD.(3)解:根据垂线段最短可知,CA大于CD,故答案为:CA大于CD.【点睛】本题考查了画平行线和垂线,垂线的性质,点的直线的距离,解题关键是熟练画图,准确掌握垂线段最短的性质.2、见解析【解析】【分析】先判定EF//AC,得到,,等量代换可得∠2=∠3,从而平分.【详解】证明:,,,,,又,∴∠3=∠A,,平分.【点睛】本题考查了平行线的判定与性质,角平分线的定义,熟练掌握平行线的判定与性质是解答本题的关键.3、见解析【解析】【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.4、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°.【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.5、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFE,∴EF//AB,∴∠ADE=∠1,又∵,∴∠ADE=∠B,∴DE//BC,(2)∵平分,∴∠ADE=∠EDC,∵DE//BC,∴∠ADE=∠B,∵∴∠5+∠ADE+∠EDC==180°,解得:,∴∠ADC=2∠B=72°,∵EF//AB,∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
相关试卷
这是一份初中冀教版第七章 相交线与平行线综合与测试练习题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,下列A,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
这是一份冀教版第七章 相交线与平行线综合与测试课时训练,共21页。试卷主要包含了下列命题中,是真命题的是等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试随堂练习题,共19页。试卷主要包含了下列说法正确的有,下列命题中是假命题的是等内容,欢迎下载使用。