初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后练习题,共19页。试卷主要包含了以下命题是假命题的是,如图,点P是直线m外一点,A,如图,直线b等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,下列给定的条件中,不能判定的是( )A. B. C. D.2、如图,下列四个选项中不能判断AD∥BC的是( )A. B.C. D.3、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.4、以下命题是假命题的是( )A.的算术平方根是2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行5、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°6、如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P到直线m的距离是线段( )的长度.A.PA B.PB C.PC D.AB7、如图,点E在的延长线上,能判定的是( )A. B.C. D.8、如图,已知AB∥CD,∠1=30°,∠2=90°,则∠3等于( )A.60° B.50° C.45° D.30°9、如图,直线b、c被直线a所截,则与是( )A.对顶角 B.同位角 C.内错角 D.同旁内角10、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =______;(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.2、两条平行直线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角_________.如图,因为a∥b (已知),所以∠1+∠2=_________(两直线平行,同旁内角互补) .3、如图,如果______,那么.4、如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.连接直线外一点与直线上各点的所有线段中,______最短.简单说成:垂线段最短. 直线外一点到这条直线的垂线段的长度,叫做______.线段______的长度叫做点A到直线l的距离.5、在数学课上,王老师提出如下问题:如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小李同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.王老师说:小李同学的方案是正确的.请回答:该方案最节省材料的依据是垂线段最短和______.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD.(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.2、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.3、如图,已知GH、MN分别平分∠AGE、∠DMF,且∠AGH=∠DMN,试说明ABCD的理由.4、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).理由:C,(已知) ,( ) .( )又,(已知) =180°.(等量代换) ,( ).( ),(已知), .5、如图,在△ABC中,∠BAC>90°,根据下列要求作图并回答问题.(1)过点C画直线lAB;(2)过点A分别画直线BC和直线l的垂线段,垂足分别为点D、E,AE交BC千点F;(3)线段 的长度是点A到BC的距离.(不要求写画法,只需写出结论即可) -参考答案-一、单选题1、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.2、D【解析】【分析】直接利用平行线的判定定理分析得出答案.【详解】解:A、已知,那么AD∥BC,故此选项不符合题意;B、已知,那么AD∥BC,故此选项不符合题意;C、已知,那么AD∥BC,故此选项不符合题意;D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;故选:D.【点睛】本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.4、A【解析】【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A、的算术平方根应该是, A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.5、D【解析】【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.6、B【解析】【分析】根据点到直线的距离的定义解答即可.【详解】解:∵PB⊥AC于点B,∴点P到直线m的距离是线段B的长度.故选:B.【点睛】本题主要考查了点到直线的距离的定义,从直线外一点到这条直线的垂线段长度叫点到直线的距离.7、B【解析】【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】A. ,,故该选项不符合题意;B. ,,故该选项符合题意;C. ,,故该选项不符合题意; D. ,,故该选项不符合题意;故选B【点睛】本题考查了平行线的判定定理,掌握平行线的判定定理是解题的关键.8、A【解析】略9、B【解析】【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.10、A【解析】【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.二、填空题1、 ⊥ 90° 60° 150°【解析】略2、 互补 180°【解析】略3、##∠ABC##∠CBA【解析】【分析】根据平行线的判定定理即可得到结论.【详解】解:,.故答案为.【点睛】本题考查了平行线的判定定理,熟练掌握同旁内角互补两直线平行是解题的关键.4、 垂线段 点到直线的距离 AD【解析】略5、两点之间线段最短【解析】【分析】根据两点之间线段最短即可得到答案.【详解】解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.三、解答题1、 (1)∠BOE=70°;(2)∠AOF=70°.【解析】【分析】(1)根据补角,余角的关系,可得∠BOC,根据角平分线的定义,可得答案;(2)根据邻补角,可得关于x的方程,根据解方程,可得∠AOC,再根据余角的定义,可得答案.(1)解:∵OF⊥CD,∴∠COF=90°,∵∠AOF=50°,∴∠AOC=40°,∴∠BOC=140°,∵OE平分∠BOC,∴∠BOE=∠BOC=70°;(2)解:∠BOD:∠BOE=1:4,设∠BOD=∠AOC=x,∠BOE=∠COE=4x.∵∠AOC与∠BOC是邻补角,∴∠AOC+∠BOC=180°,即x+4x+4x=180°,解得x=20°.∵∠AOC与∠AOF互为余角,∴∠AOF=90°-∠AOC=90°-20°=70°.【点睛】本题考查了对顶角、邻补角,利用邻补角的定义、余角的定义是解题关键.2、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.3、见解析【解析】【分析】根据角平分线的意义可得∠AGE=2∠AGH,∠DMF=2∠DMN,等量代换可得∠DMF=∠FGB,根据平行线的判定定理即可求得ABCD【详解】∵GH平分∠AGE,∴∠AGE=2∠AGH同理∠DMF=2∠DMN∵∠AGH=∠DMN∴∠AGE=∠DMF又∵∠AGE=∠FGB ∴∠DMF=∠FGB ∴ABCD (同位角相等,两直线平行).【点睛】本题考查了平行线的判定定理,角平分线的意义,掌握平行线的判定定理是解题的关键.4、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC【解析】【分析】结合图形,根据平行线的判定和性质逐一进行填空即可.【详解】解:,已知,同位角相等,两直线平行两直线平行,内错角相等又,(已知)(等量代换),同旁内角互补,两直线平行)(两直线平行,同位角相等),(已知) ,,.【点睛】本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.5、 (1)见解析(2)见解析(3)AD【解析】【分析】(1)根据几何语言画出对应的几何图形;(2)根据几何语言画出对应的几何图形;(3)根据点到直线的距离的定义求解.(1)如图,直线l为所作;(2)如图,AD、AE为所作;(3)线段AD的长度为点A到BC的距离.故答案为:AD.【点睛】此题考查了点到直线的距离,用直尺、三角板画平行线,作图—复杂作图.正确掌握各作图方法是解题的关键。
相关试卷
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共24页。试卷主要包含了如图,不能推出a∥b的条件是,下列命题中,为真命题的是,以下命题是假命题的是等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试同步达标检测题,共22页。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试精练,共23页。试卷主要包含了直线,下列说法正确的有等内容,欢迎下载使用。