初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时练习
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课时练习,共24页。试卷主要包含了直线,下列说法正确的有等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,下列条件中能判断直线的是( )A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠52、如图,点在延长线上,下列条件中不能判定的是( )A. B. C. D.3、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°4、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°5、如图,已知直线,相交于O,平分,,则的度数是( )A. B. C. D.6、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠57、下列说法正确的有( )①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个 B.2个 C.3个 D.4个8、如图,给出下列条件,①∠1=∠2,②∠3=∠4,③ADBE,且∠D=∠B,④ADBE,且∠DCE=∠D,其中能推出ABDC的条件为( )A.①② B.②③ C.③④ D.②③④9、如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于( )A.116° B.118° C.120° D.124°10、如图,一束平行光线中,插入一张对边平行的纸版,如果光线与纸版右下方所成的∠1是110°,那么光线与纸版左上方所成的∠2的度数是( )A.110° B.100° C.90° D.70°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作_________平移得到. 对一个图形进行平移,这个图形上所有点的坐标都要发生相应的_________;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.2、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.证明:∵(已知),∴(垂直的定义).∴________,∵(已知),∴________(依据1:________),∴(依据2:________).3、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.4、如图,直线AB和CD相交于点O,∠BOE=90°,∠DOE=130°,则∠AOC=______.5、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,OE⊥CD.(1)若∠BOD∶∠BOC=1∶4,求∠AOE的度数;(2)在第一问的条件下,过点O作OF⊥AB,则∠EOF的度数为 .2、完成下面的证明:已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.证明:∵AB⊥AC(已知)∴∠ =90°( )∵∠1=30°,∠B=60°(已知)∴∠1+∠BAC+∠B= ( )即∠ +∠B=180°∴AD∥BC( )3、如图,用三张卡片拼成如下图①,图②所示的两个四边形,其周长分别为、.(1)请你根据所学知识解释:在直角三角形卡片中,“”的理由是_________.(填写正确选项的字母)A.两点之间线段最短;B.过一点有且只有一条直线与已知直线垂直;C.垂线段最短;D.两点确定一条直线.(2)分别计算、(用含m、n的代数式表示);(3)比较与的大小,并说明理由.4、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,,则与的关系是 ;(2)如图2所示,,,则与的关系是 ;(3)经过上述探索,我们可以得到一个结论(试用文字语言表述): ;(4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度?5、如图,已知于点,于点,,试说明.解:因为(已知),所以( ).同理.所以( ).即.因为(已知),所以( ).所以( ). -参考答案-一、单选题1、C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.故选:C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.2、A【解析】【分析】根据平行线的判定方法直接判定即可.【详解】解:选项B中,,(内错角相等,两直线平行),所以正确;选项C中,,(内错角相等,两直线平行),所以正确;选项D中,,(同旁内角互补,两直线平行),所以正确;而选项A中,与是直线、被所截形成的内错角,因为,所以应是,故A错误.故选:A.【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.4、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5、C【解析】【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.6、D【解析】【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.7、B【解析】【分析】根据所学的相关知识,逐一判断即可.【详解】解:①两点之间的所有连线中,线段最短,故①说法正确.②相等的角不一定是对顶角,故②说法错误.③经过直线外一点有且只有一条直线与已知直线平行,故③说法错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④说法错误.⑤两点之间的距离是两点间的线段的长度,故⑤说法错误.⑥在同一平面内,两不重合的直线的位置关系只有两种:相交和平行,故⑥说法正确.综上所述,正确的结论有2个.故选:.【点睛】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.8、B【解析】【分析】根据平行线的判定逐个判断即可.【详解】①∠1=∠2,②∠3=∠4,③ADBE, ∠D=∠B,④∠DCE=∠D,能推出ABDC的条件为②③故选B【点睛】本题考查了平行线的性质与判定定理,掌握平行线的判定定理是解题的关键.9、B【解析】【分析】由AB与CD平行,利用两直线平行同旁内角互补得到∠2+∠3=180°,由对顶角相等得到∠1=∠3,等量代换得到∠1=180°-∠2,再代入∠2=2∠1﹣6°,即可求出∠2的度数.【详解】解:如图:∵AB∥CD,∴∠2+∠3=180°,∴∠3=180°-∠2,∵∠1=∠3,∴∠1=180°-∠2,∴∠2=2(180°-∠2)﹣6°,∴∠2=118°,故选:B.【点睛】此题考查了对顶角性质和平行线的性质,掌握两直线平行同旁内角互补是解答此题的关键.10、A【解析】【分析】根据AB∥CD,BC∥AD,分别得到∠1+∠ADC=180°,∠2+∠ADC=180°,因此∠1=∠2,即可求解.【详解】解:如图:∵AB∥CD,∴∠1+∠ADC=180°,∵BC∥AD,∴∠2+∠ADC=180°,∴∠1=∠2.∵∠1=110°,∴∠2=110°.故选:A.【点睛】本题考查平行线的性质,两直线平行,同旁内角互补.二、填空题1、 一次 变化【解析】略2、 同角的余角相等 内错角相等,两直线平行【解析】【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵(已知),∴(垂直的定义).∴,∵(已知),∴(同角的余角相等),∴(内错角相等,两直线平行).故答案为:;;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.3、68【解析】【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.4、40°##40度【解析】【分析】先根据角的和差关系可求∠BOD,再根据对顶角相等可求∠AOC.【详解】解:∵∠BOE=90°,∠DOE=130°,∴∠BOD=130°-90°=40°,又 ∴∠AOC=40°.故答案为:40°.【点睛】本题考查了对顶角,关键是根据角的和差关系可求∠BOD.5、【解析】【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴,故答案为:.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.三、解答题1、(1);(2)或.【解析】【分析】(1)先根据可求出,从而可得,再根据垂直的定义可得,然后根据即可得;(2)先根据(1)的结果求出的度数,再根据垂直的定义可得,然后分①在直线的上方,②在直线的下方两种情况,根据角的和差即可得.【详解】解:(1),,,,,;(2)由(1)已得:,,,,由题意,分以下两种情况:①如图,当在直线的上方时,则;②如图,当在直线的下方时,则;综上,的度数为或,故答案为:或.【点睛】本题考查了邻补角、垂直,较难的是题(2),正确分两种情况讨论是解题关键.2、见解析【解析】【分析】先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.【详解】证明:∵(已知),∴(垂直的定义),∵,(已知),∴(等量关系),即,∴(同旁内角互补,两直线平行).【点睛】本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.3、 (1)C(2),(3),理由见解析【解析】【分析】(1)根据垂线段最短解答;(2)根据周长公式计算即可;(3)利用作差法比较大小.(1)解:“”的理由是垂线段最短,故选:C;(2)解:;(3)解:;∵n<m,∴n-m<0,∴,∴.【点睛】此题考查了垂线的性质,计算图形的周长,利用作差法比较两个式子的大小,整式加减的应用,正确掌握垂线的性质及作差法比较大小的方法是解题的关键.4、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4),【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.,.,..故答案为:.(2),.,..故答案为:.(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是、,且.,...这两个角分别为、. 图1 图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.5、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【解析】【分析】根据垂直定义得出,求出,根据平行线的判定推出即可.【详解】解:因为(已知),所以(垂直的定义),同理.所以(等量代换),即.因为(已知),所以(等式的性质,所以(内错角相等,两直线平行).故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行【点睛】本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共25页。试卷主要包含了下列说法正确的有等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共23页。试卷主要包含了下列说法中正确的有等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步达标检测题,共20页。试卷主要包含了如图,一定能推出的条件是,下列说法中正确的有,如图,直线a,以下命题是假命题的是等内容,欢迎下载使用。