![难点解析冀教版七年级数学下册第七章相交线与平行线必考点解析试卷(无超纲带解析)第1页](http://m.enxinlong.com/img-preview/2/3/12717645/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第七章相交线与平行线必考点解析试卷(无超纲带解析)第2页](http://m.enxinlong.com/img-preview/2/3/12717645/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版七年级数学下册第七章相交线与平行线必考点解析试卷(无超纲带解析)第3页](http://m.enxinlong.com/img-preview/2/3/12717645/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试
展开
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共21页。试卷主要包含了如图,下列条件中不能判定的是,有下列说法,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
2、如图,l1∥l2,l3∥l4,与∠α互补的是( )
A.∠1B.∠2C.∠3D.∠4
3、如图,一定能推出的条件是( )
A.B.C.D.
4、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
5、如图,已知直线,相交于O,平分,,则的度数是( )
A.B.C.D.
6、如图,下列条件中不能判定的是( )
A.B.C.D.
7、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1B.2C.3D.4
8、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30°B.40°C.50°D.60°
9、如图,,交于点,,,则的度数是( )
A.34°B.66°C.56°D.46°
10、下面的四个图形中,能够通过基本图形平移得到的图形有( )
A.1个B.2个C.3个D.4个
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AD∥BC,AC与BD相交于点O,则图中面积相等的三角形共有___对.
2、如图,AB∥CD,M在AB上,N在CD上,求∠1+∠2+∠3+∠4=_______.
3、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.
4、如图,已知AB∥CD,∠ABC=120°,∠1=27°,则直线CB和CE的夹角是_____°.
5、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB、CD相交于点O,,过点O画,O为垂足,求的度数.
2、如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.
3、如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.
(1)求∠BOC的度数;
(2)试说明OE平分∠AOC.
4、如图,已知平面上有三个点A,B,C,请按要求画图,并回答问题:
(1)画直线AB,射线CA;
(2)延长AC到D,使得,连接BD;
(3)过点B画,垂足为E;
(4)通过测量可得,点B到直线AC的距离约为 cm.(精确到0.1cm)
5、请把下列证明过程及理由补充完整(填在横线上):
已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.
证明:∵AD∥BC(已知),
∴∠3= ( ).
∵∠3=∠4(已知),
∴∠4= ( ).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF( ).
即∠BAF= .
∴∠4=∠BAF.( ).
∴AB∥CD( ).
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
2、D
【解析】
【分析】
如图,先证明再证明 可得 再利用邻补角的定义可得答案.
【详解】
解:如图,
所以与∠α互补的是
故选D
【点睛】
本题考查的是平行线的性质,邻补角的定义,掌握“两直线平行,同位角相等”是解本题的关键.
3、D
【解析】
【分析】
平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.
【详解】
解:A.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
B.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
C.和是直线和被直线所截所成的内错角,但不能判定,
不能判定,
和是直线和被直线所截所成的同位角,但不能判定,
不能判定,
不能推出,故本选项不符合题意;
D.和是直线和被直线所截所成的同位角,
能推出,故本选项符合题意;
故选:D.
【点睛】
本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.
4、A
【解析】
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
5、C
【解析】
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
6、A
【解析】
【分析】
根据平行线的判定逐个判断即可.
【详解】
解:A、∵∠1=∠2,∠1+∠3=∠2+∠5=180°,
∴∠3=∠5,
因为”同旁内角互补,两直线平行“,
所以本选项不能判断AB∥CD;
B、∵∠3=∠4,
∴AB∥CD,
故本选项能判定AB∥CD;
C、∵,
∴AB∥CD,
故本选项能判定AB∥CD;
D、∵∠1=∠5,
∴AB∥CD,
故本选项能判定AB∥CD;
故选:A.
【点睛】
本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解此题的关键,平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.
7、A
【解析】
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
8、B
【解析】
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
9、C
【解析】
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
10、B
【解析】
【分析】
根据平移的性质,对逐个选项进行分析即可.
【详解】
解:第一个、第二个图不能由基本图形平移得到,
第三个、第四个图可以由基本图形平移得到,
故选:B.
【点睛】
本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.
二、填空题
1、3
【解析】
【分析】
根据平行线的性质可得到两对同底同高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,故面积相等的三角形有三对.
【详解】
解:根据平行线的性质知,△ADC与△DAB,△ABC与DCB都是同底等高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,
所以面积相等的三角形有三对,
故答案为:3.
【点睛】
本题考查了平行线间的距离,三角形的面积的公式,熟记平行线间的距离处处相等是解题的关键.
2、540°
【解析】
【分析】
首先过点E、F作EG、FH平行于AB,根据两直线平行,同旁内角互补,即可求得答案.
【详解】
如图,过点E、F作EG、FH平行于AB,
∵AB∥CD,
∵AB∥EG∥FH∥CD,
∴∠1+∠MEG=180°,∠GEF+∠EFH=180°,∠HFN+∠4=180°,
∴∠1+∠MEF+∠EFN+∠4=540°,
故答案为:540°.
【点睛】
此题考查了平行线的性质.注意掌握辅助线的作法是解此题的关键.
3、75
【解析】
【分析】
先计算∠AOB的度数,后利用对顶角相等确定即可.
【详解】
如图,根据题意,得∠AOB=135°-60°=75°,
∵∠AOB=∠1,
∴∠1=75°,
4、93
【解析】
【分析】
AB∥CD,∠DCB=∠ABC=120°,将角度代入∠BCE=∠DCB -∠1求解即可.
【详解】
解:∵AB∥CD
∴∠DCB=∠ABC=120°
又∵∠1=27°
∴∠BCE=∠DCB -∠1=93°
故答案为93.
【点睛】
本题考查了平行线中关于内错角的性质.解题的关键在于熟练使用两直线平行,内错角相等的性质.
5、35
【解析】
【分析】
根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.
【详解】
解:∵∠AOD=70°,∠AOD+∠BOD=180°,
∴∠BOD=110°,
∵OC是∠DOB的平分线,
∴ ,
∵OD⊥OE,
∴∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=20°,
∴∠COE=∠BOC-∠BOE=35°.
故答案为:35
【点睛】
本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.
三、解答题
1、20°或160°
【解析】
【分析】
分两种情况画出图形,根据对顶角和垂线的定义分别求解.
【详解】
解:如图:
∵∠AOC=70°,
∴∠BOC=180°-70°=110°,
∵EO⊥CD,
∴∠BOE=∠BOC-∠COE=20°;
如图,
∵∠AOC=70°,
∴∠BOD=70°,
∵EO⊥CD,
∴∠BOE=∠BOD+∠DOE=160°;
综上:∠BOE的度数为20°或160°.
【点睛】
本题考查对顶角的性质,垂线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、见解析
【解析】
【分析】
由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.
【详解】
证明:∵AB∥CD,
∴∠A=∠D,
∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,
∴∠CEF=∠DOC.
∴EF∥AD.
∴∠EFC=∠D,
∵∠A=∠D,
∴∠EFC=∠A.
【点睛】
本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.
3、 (1)∠BOC=60°
(2)见解析
【解析】
【分析】
(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
【详解】
(1)∵∠AOB=∠BOC+∠AOC=180°,
又∠BOC:∠AOC=1:2,
∴∠AOC=2∠BOC,
∴∠BOC+2∠BOC=180°,
∴∠BOC=60°;
(2)∵OD平分∠BOC,
∴∠BOD=∠DOC,
∵∠DOC+∠COE=90°,∠AOB是平角,
∴∠AOE+∠BOD=90°,
∴∠AOE=∠COE
即OE平分∠AOC.
【点睛】
本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
4、(1)见解析;(2)见解析;(3)见解析;(4)3.1
【解析】
【分析】
(1)根据直线、射线的定义,即可求解;
(2)根据题意,先延长AC到D,使得,再连接BD,即可求解;
(3)根据题意,过点B画,垂足为E,即可求解;
(4)根据题意得:点B到直线AC的距离为 的长,测量 的长,即可求解.
【详解】
解:(1)如图所示:
(2)如图所示:
(3)如图所示:
(4)根据题意得:点B到直线AC的距离为 的长,
所以通过测量可得,点B到直线AC的距离约为3.1厘米.
【点睛】
本题主要考查了直线、射线、线段的定义,点到直线的距离,熟练掌握直线是两端都没有端点、可以向两端无限延伸、不可测量长度的线;射线是只有一个端点,它从一个端点向另一边无限延长不可测量长度的线;直线外一点到直线的垂线段的长度叫做点到直线的距离是解题的关键.
5、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【解析】
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
相关试卷
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试测试题,共22页。试卷主要包含了下列命题中,是假命题的是等内容,欢迎下载使用。
这是一份初中冀教版第七章 相交线与平行线综合与测试随堂练习题,共22页。试卷主要包含了下列命题不正确的是,直线等内容,欢迎下载使用。
这是一份冀教版七年级下册第七章 相交线与平行线综合与测试同步训练题,共24页。试卷主要包含了下列说法正确的是,如图,直线b等内容,欢迎下载使用。