冀教版七年级下册第六章 二元一次方程组综合与测试练习题
展开冀教版七年级下册第六章二元一次方程组定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知是二元一次方程组的解,则m+n的值为( )
A. B.5 C. D.
2、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个 B.3个 C.4个 D.5个
3、在一次爱心捐助活动中,八年级(1)班40名同学共捐款275元,已知同学们捐款的面额只有5元、10元两种,求捐5元和10元的同学各有多少名?若设捐5元的同学有x名,捐10元的有y名,则可列方程组为( )
A. B.
C. D.
4、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有( )
A.5个 B.6个 C.7个 D.8个
5、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
6、若是方程的解,则等于( )
A. B. C. D.
7、某学校体育有场的环形跑道长,甲、乙分别以一定的速度练习长跑和骑自行车.同时同地出发,如果反向而行,那么他们每隔相遇一次.如果同向而行,那么每隔乙就追上甲一次,设甲的速度为,乙的速度为,则可列方程组为( )
A. B.
C. D.
8、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )
A.1 B.﹣1 C.2 D.﹣3
9、已知a,b满足方程组则的值为( )
A. B.4 C. D.2
10、下列方程是二元一次方程的是( )
A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.﹣2y=1
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.
2、一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.
3、二元一次方程组中有两个未知数,如果消去其中的一个未知数,那么就把二元一次方程组转化成____________方程了,于是可以求出其中的一个未知数,然后再求另一个未知数.这种将未知数的个数由多转化少、逐一解决的想法,叫做____________思想.
4、写出二元一次方程组 的所有正整数解________________.
5、两个长方形的长与宽的比都是2:1,大长方形的宽比小长方形的宽多3cm,大长方形的周长是小长方形周长的2倍,则大长方形的周长是___________cm.
三、解答题(5小题,每小题10分,共计50分)
1、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?
2、(1)解方程3(x+1)=8x+6;
(2)解方程组.
3、用适当的方法解下列方程组.
4、茜茜数码专卖店销售容量分别为、、、和的五种移动盘,2020年10月1日的销售情况如下表:
盘容量 | 1 | 2 | 4 | 8 | 16 |
销售数量(只 | 5 | 6 | 3 |
(1)由于不小心,表中销售数量中,和销售数量被污染,但知道的销售数量比的销售数量的2倍少2只,且5种盘的销售总量是30只.求和的销售数量.
(2)若移动盘的容量每增加,其销售单价增加10元,已知2020年10月1日当天销售这五种盘的营业额是2730元,求容量为的移动盘的销售单价是多少元?
5、解方程组
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据方程组解的定义,方程组的解适合方程组中的每个方程,转化为关于m、n的方程组即可解决问题.
【详解】
解:∵是二元一次方程组的解,
∴,
解得,
∴m+n=5.
故选:B.
【点睛】
本题考查二元一次方程组的解,理解方程组解的定义是解决问题的关键.
2、C
【解析】
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
3、C
【解析】
【分析】
根据题意,x+y=40,5x+10y=275,判断即可.
【详解】
根据题意,得x+y=40,5x+10y=275,
∴符合题意的方程组为,
故选C.
【点睛】
本题考查了二元一次方程组的应用,准确找到符合题意的等量关系是解题的关键.
4、D
【解析】
【分析】
设原来的两位数为10a+b,则新两位数为,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.
【详解】
解:设原来的两位数为10a+b,根据题意得:
10a+b+9=10b+a,
解得:b=a+1,
因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.
故选:D.
【点睛】
本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:十位上的数+个位上的数,注意不要漏数.
5、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
6、B
【解析】
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
7、A
【解析】
【分析】
此题中的等量关系有:①反向而行,则两人20秒共走250米;②同向而行,则50秒乙比甲多跑250米.
【详解】
解:①根据反向而行,得方程为30(x+y)=400;
②根据同向而行,得方程为80(y-x)=400.
那么列方程组,
故选:A.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,注意追及问题和相遇问题不同的求解方法是解题的关键.
8、C
【解析】
【分析】
先求出方程组的解,由方程组的解为正整数分析得出a值.
【详解】
解:解方程组,得,
∵方程组的解为正整数,
∴a=0时,;a=2时,,
∴满足条件的所有整数a的和为0+2=2.
故选:C.
【点睛】
此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.
9、A
【解析】
【分析】
求出方程组的解得到a与b的值,即可确定出-a-b的值.
【详解】
解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则-a-b=-4,
故选:A.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
10、C
【解析】
【分析】
根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.
【详解】
解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,
∴x﹣xy=1不是二元一次方程;
B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,
∴x2﹣y﹣2x=1不是二元一次方程;
C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,
∴3x﹣y=1是二元一次方程;
D、﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,
∴﹣2y=1不是二元一次方程.
故选:C.
【点睛】
此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
二、填空题
1、58
【解析】
【分析】
设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.
【详解】
解:设原来的两位数的十位数字为x,个位数字为y,
依题意得:,
解得:,
∴10x+y=58.
故答案为:58.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
2、63
【解析】
【分析】
设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.
【详解】
解:设每行5人的队列有a列,每行6人的队列有b列,班级共x人,则
,
∴队列的人数是5的倍数,也是6的倍数,即30的倍数,
∵班级的学生人数超过40人但又不多于80人,
∴队列人数为60人,
∴班级人数为x=60+3=63人,
故答案为:63.
【点睛】
此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.
3、 一元一次 消元
【解析】
略
4、
【解析】
【分析】
先把方程3x+y=10变形为 y=10-3x,再根据整除的特征,逐一尝试即可求解.
【详解】
解:∵3x+y=10,
∴y=10-3x,
∴原方程的所有正整数解是,,,
故答案为:,,.
【点睛】
本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.
5、36
【解析】
【分析】
设小长方形的宽为x cm,大长方形的宽为y cm,则小长方形的长为2x cm,大长方形的长为2y cm,由题意:大长方形的宽比小长方形的宽多3cm,大长方形的周长是小长方形周长的2倍,列出方程组,解方程组,即可求解.
【详解】
解:设小长方形的宽为x cm,大长方形的宽为y cm,则小长方形的长为2x cm,大长方形的长为2y cm,
由题意得:,
解得:,
则2y=12,
∴大长方形的周长为2×(6+12)=36(cm),
故答案为:36.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
三、解答题
1、上坡路2.25千米、平路0.8千米、下坡路0.25千米
【解析】
【分析】
本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:从家到学校的路程为3.3千米;去时上坡时间+下坡时间+平路时间=1小时;回时上坡时间+下坡时间+平路时间=44分,据此可列方程组求解.
【详解】
解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:
,
解得.
答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.
【点睛】
本题考查了三元一次方程组的应用,本题有三个未知量,还需注意去时是上坡路回时是下坡路,回来时恰好相反,平路不变.
2、(1)x=;(2)
【解析】
【分析】
(1)去括号,移项,合并同类项,系数化成1即可;
(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.
【详解】
解:(1)3(x+1)=8x+6,
去括号,得3x+3=8x+6,
移项,得3x-8x=6-3,
合并同类项,得-5x=3,
系数化成1,得x=;
(2),
①×2+②,得13x=26,
解得:x=2,
把x=2代入①,得10+y=7,
解得:y=-3,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.
3、
【解析】
【分析】
将代入消元求解的值,进而求出的值.
【详解】
解:
由①得,③
将③代入②得,
解得
把代入③,得
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.
4、 (1)容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只;
(2)容量为的移动盘的销售单价是80元.
【解析】
【分析】
(1)设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,根据题意列出二元一次方程组求解即可得;
(2)设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,根据题意列出一元一次方程求解即可得.
(1)
设容量为的移动盘的销售数量为x只,容量为的移动盘的销售数量为y只,
依题意得:,
解得:.
答:容量为的移动盘的销售数量为6只,容量为的移动盘的销售数量为10只.
(2)
设容量为的移动盘的销售单价是m元,则容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,容量为的移动盘的销售单价是元,
依题意得:,
解得:.
答:容量为的移动盘的销售单价是80元.
【点睛】
题目主要考查二元一次方程组及一元一次方程的应用,理解题意,列出方程是解题关键.
5、
【解析】
【分析】
把方程组整理后,利用加减消元法求解即可.
【详解】
解:原方程组可化为,
②-①得:6y=12,
解得:y=2,代入①中,
解得:x=,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共18页。试卷主要包含了已知关于x,若关于x等内容,欢迎下载使用。
数学第六章 二元一次方程组综合与测试同步练习题: 这是一份数学第六章 二元一次方程组综合与测试同步练习题,共18页。
七年级下册第六章 二元一次方程组综合与测试课后练习题: 这是一份七年级下册第六章 二元一次方程组综合与测试课后练习题,共19页。试卷主要包含了已知是二元一次方程,则的值为等内容,欢迎下载使用。