初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共29页。试卷主要包含了下列说法中,正确的是,下列说法中正确的有等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是( )
A.线段AC的长度表示点C到AB的距离
B.线段AD的长度表示点A到BC的距离
C.线段CD的长度表示点C到AD的距离
D.线段BD的长度表示点A到BD的距离
2、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
3、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )
A.千米 B.千米 C.千米 D.千米
4、下列说法中,正确的是( )
A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
B.互相垂直的两条直线不一定相交
C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
D.过一点有且只有一条直线垂直于已知直线
5、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
6、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )
A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠E
C.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°
7、下列说法中正确的有( )
①一条直线的平行线只有一条.
②过一点与已知直线平行的直线只有一条.
③因为a∥b,c∥d,所以a∥d.
④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B.2个 C.3个 D.4个
8、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,,则( )
A.20° B.40° C.70° D.110°
9、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
10、如图,能与构成同位角的有( )
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____
2、如图,把一条两边边沿互相平行的纸带折叠,若,则_______.
3、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
①如果ab,a⊥c,那么b⊥c;
②如果ba,ca,那么bc;
③如果b⊥a,c⊥a,那么b⊥c;
④如果b⊥a,c⊥a,那么bc.
其中正确的是__.(填写序号)
4、如图,已知,CE平分,,则______°.
5、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.
三、解答题(10小题,每小题5分,共计50分)
1、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
2、如图,AB∥DG,∠1+∠2=180°.
(1)试说明:AD∥EF;
(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
3、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
证明:过点E作直线EF∥CD,
∠2=______,( )
AB∥CD(已知),EF∥CD
_____∥EF,( )
∠B=∠1,( )
∠1+∠2=∠BED,
∠B+∠D=∠BED,( )
方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.
4、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
(1)过点C画AD的平行线CE;
(2)过点B画CD的垂线,垂足为F.
5、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
6、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.
7、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
8、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
(1)如图1,求∠DOE的度数;
(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
9、如图,,P为,之间的一点,已知,,求∠1的度数.
10、请把下列证明过程及理由补充完整(填在横线上):
-参考答案-
一、单选题
1、D
【分析】
根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.
【详解】
解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;
B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;
C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;
D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;
故选:D.
【点睛】
本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.
2、B
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
故选:B.
【点睛】
本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
3、B
【分析】
根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
【详解】
解:根据两直线平行,内错角相等,可得∠ABG=48°,
∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
∴AB⊥BC,
∴A地到公路BC的距离是AB=8千米,
故选B.
【点睛】
此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
4、C
【分析】
根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
【详解】
从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
故选:C.
【点睛】
本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
5、B
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
6、C
【分析】
如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
【详解】
如图,过点C作CG∥AB,过点D作DH∥EF,
∴∠A=∠ACG,∠EDH=180°﹣∠E,
∵AB∥EF,
∴CG∥DH,
∴∠CDH=∠DCG,
∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
∴∠A﹣∠ACD+∠CDE+∠E=180°.
故选:C.
【点睛】
本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
7、A
【分析】
根据平行线的性质,平行线的判定判断即可.
【详解】
∵一条直线的平行线有无数条,
∴①的说法不正确;
∵经过直线外一点有且只有一条直线与已知直线平行,
∴②的说法不正确,④的说法正确;
∵a∥b,c∥d,无法判定a∥d
∴③的说法不正确.
只有一个是正确的,
故选A.
【点睛】
本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
8、B
【分析】
根据题意可得,,再由折叠的性质得到,即可得解;
【详解】
∵,
∴,,
∵,
∴,,
由折叠可知:,则;
故选B.
【点睛】
本题主要考查了折叠问题,平行线的性质,准确计算是解题的关键.
9、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
10、B
【分析】
根据同位角的定义判断即可;
【详解】
如图,与能构成同位角的有:∠1,∠2,∠3.
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
二、填空题
1、
【分析】
先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
【详解】
解:
∠EFG+∠EGD=150°,
∠EGD=
折叠
故答案为:.
【点睛】
本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
2、62°
【分析】
如图,根据平行线的性质可得,根据折叠的性质可得,再利用平角等于180°,据此求解即可.
【详解】
解:∵纸片两边平行,
∴
由折叠的性质可知,,
∴,
∴=62°.
故答案为:62°.
【点睛】
本题主要考查平行线的性质,折叠的性质,解此题的关键在于熟练掌握其知识点.
3、①②④
【分析】
根据两直线的位置关系一一判断即可.
【详解】
解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
②如果ba,ca,那么bc,正确;
③如果b⊥a,c⊥a,那么bc,错误;
④如果b⊥a,c⊥a,那么bc,正确;
故答案为:①②④.
【点睛】
本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
4、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
5、44
【分析】
根据平行线的性质和翻折不变性解答.
【详解】
解:∵ADBC,
∴∠DFE=180°−∠CEF=180°−68°=112°,
∴∠D′FE=112°,∠GFE=180°−112°=68°,
∴∠GFD′=112°−68°=44°.
故答案为:44.
【点睛】
本题考查了平行线的性质和翻折不变性,注意观察图形.
三、解答题
1、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
2、(1)见解析;(2)∠B=38°.
【分析】
(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
【详解】
(1)∵AB∥DG,
∴∠BAD=∠1,
∵∠1+∠2=180°,
∴∠BAD+∠2=180°.
∵AD∥EF .
(2)∵∠1+∠2=180°且∠2=142°,
∴∠1=38°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=38°,
∵AB∥DG,
∴∠B=∠CDG=38°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
3、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【分析】
过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
【详解】
解:过点E作直线EF∥CD,
∠2=∠D,(两直线平行,内错角相等)
AB∥CD(已知),EF∥CD
AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
∠B=∠1,(两直线平行,内错角相等)
∠1+∠2=∠BED,
∠B+∠D=∠BED,(等量代换 )
方法与实践:如图②,
∵直线AB∥CD
∴∠BOD=∠D=53°
∵∠BOD=∠E+∠B
∴∠E=∠BOD-∠B=53°- 22°=31°.
故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【点睛】
本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)根据要求作出图形即可.
(2)根据要求作出图形即可.
【详解】
解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
如图,直线CE即为所求作.
(2)根据题意得:CD是长为6,宽为3的长方形的对角线,
所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
如图,直线BF即为所求作.
【点睛】
本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
5、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
6、60°
【分析】
由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
【详解】
解:CD⊥AB于D,FE⊥AB于E,
∴,
∴∠2=∠4,
又∵∠1=∠2,
∴∠1=∠4,
∴,
∴.
【点睛】
本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
7、(1)两角相等,见解析;(2)180°
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
8、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【分析】
(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
【详解】
解:(1)∵EO⊥AB,
∴∠BOE=90°,
∴∠COE+∠BOD=90°,
∵∠EOC:∠BOD=7:11,
∴∠COE=35°,∠BOD=55°,
∴∠DOE=∠BOD+∠BOE=145°;
(2)∵MN⊥CD,
∴∠COM=90°,
∴∠EOM=∠COE+∠COM=125°,
∵∠BOD=55°,
∴∠BOC=180°-∠BOD=125°,
∴∠AOD=∠BOC=125°,
∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【点睛】
本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
9、30°
【分析】
首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
【详解】
过点P作射线,如图①.
∵,,
∴.
∴.
∵,∴.
又∵.
∴.
【点睛】
此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
10、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
相关试卷
这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题,共28页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共32页。试卷主要包含了如图,直线AB,下列说法中,正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时作业,共32页。试卷主要包含了如图所示,直线l1∥l2,点A,下列说法中正确的有个等内容,欢迎下载使用。