终身会员
搜索
    上传资料 赚现金

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选含详解)

    立即下载
    加入资料篮
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选含详解)第1页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选含详解)第2页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共32页。试卷主要包含了如图,直线AB,下列说法中,正确的是等内容,欢迎下载使用。


    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
    小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )
    A.嘉淇的推理严谨,不需要补充
    B.应补充∠2=∠5
    C.应补充∠3+∠5=180°
    D.应补充∠4=∠5
    2、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为( )度.
    A.25°B.45°C.30°D.22°
    3、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
    A.①B.②和③C.④D.①和④
    4、如图,,能表示点到直线(或线段)的距离的线段有( )
    A.五条B.二条C.三条D.四条
    5、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
    A.72°B.98°
    C.100°D.108°
    6、下列说法中,正确的是( )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    7、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
    A.30°B.40°C.50°D.60°
    8、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )
    A.125°B.115°C.105°D.95°
    9、在如图中,∠1和∠2不是同位角的是( )
    A.B.
    C.D.
    10、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )
    A.60°B.90°C.120°D.150°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
    2、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.
    3、如图,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的取值范围是________.
    4、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.
    5、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,方格纸中每个小正方形的边长都是1.
    (1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
    (2)求四边形PMAN的面积.
    2、按要求画图,并回答问题:
    如图,平面内有三个点A,B,C.
    根据下列语句画图:
    (1)画直线AB;
    (2)射线BC;
    (3)延长线段AC到点D,使得;
    (4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);
    (5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).
    3、作图并计算:如图,点O在直线上.
    (1)画出的平分线(不必写作法);
    (2)在(1)的前提下,若,求的度数.
    4、如图,AB∥DG,∠1+∠2=180°.
    (1)试说明:AD∥EF;
    (2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
    5、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
    (1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
    (2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
    (3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
    (4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
    6、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.
    (1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
    (2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
    7、已知:如图,中,点、分别在、上,交于点, ,.
    (1)求证:;
    (2)若平分,,求的度数.
    8、如图,AE=AF,以AE为直径作⊙O交EF点D,过点D作BC⊥AF,交AE的延长线于点B.
    (1)判断直线BC与⊙O的位置关系,并说明理由;
    (2)若AE=5,AC=4,求BE的长.
    9、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.
    (1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
    (2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
    (3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
    10、如图,现有以下3个论断:①ABCD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,另一个论断为结论构造命题.
    (1)你构造的是哪几个命题?
    (2)请选择其中一个真命题加以证明.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据平行线的性质与判定、平行公理及推论解决此题.
    【详解】
    解:证明:作直线DF交直线a、b、c分别于点D、E、F,
    ∵a∥b,
    ∴∠1=∠4,
    又∵a∥c,
    ∴∠1=∠5,
    ∴∠4=∠5.
    ∴b∥c.
    ∴应补充∠4=∠5.
    故选:D.
    【点睛】
    本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
    2、D
    【分析】
    由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
    【详解】
    解:由平移的性质知,AO∥SM,
    故∠WMS=∠OWM=22°;
    故选D.
    【点睛】
    本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    3、A
    【分析】
    利用平行线的性质逐一判断即可.
    【详解】
    ①是平行线的性质,故符合题意;
    ②是平行线的判定,故不符合题意;
    ③是平行线的判定,故不符合题意;
    ④是平行线的判定,故不符合题意;
    故选:A.
    【点睛】
    本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
    4、A
    【分析】
    直接利用点到直线的距离的定义分析得出答案.
    【详解】
    解:线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    故图中能表示点到直线距离的线段共有五条.
    故选:A.
    【点睛】
    此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
    5、D
    【分析】
    根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
    【详解】
    解:设∠BOD=x,
    ∵∠BOD:∠BOE=1:2,
    ∴∠BOE=2x,
    ∵OE平分∠BOC,
    ∴∠COE=∠BOE=2x,
    ∴x+2x+2x=180°,
    解得,x=36°,即∠BOD=36°,∠COE=72°,
    ∴∠AOC=∠BOD=36°,
    ∴∠AOE=∠COE+∠AOC=108°,
    故选:D.
    【点睛】
    本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
    6、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    7、D
    【分析】
    根据平行线的性质和垂直的定义解答即可.
    【详解】
    解:∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∵∠2=30°,
    ∴∠CAB=180°−90°−30°=60°,
    ∵l1l2,
    ∴∠1=∠CAB=60°.
    故选:D.
    【点睛】
    此题考查平行线的性质,关键是根据平行线的性质解答.
    8、A
    【分析】
    利用互余角的概念与邻补角的概念解答即可.
    【详解】
    解:∵∠1=35°,∠AOC=90°,
    ∴∠BOC=∠AOC−∠1=55°.
    ∵点B,O,D在同一条直线上,
    ∴∠2=180°−∠BOC=125°.
    故选:A.
    【点睛】
    本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
    9、D
    【分析】
    同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
    【详解】
    解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
    故选:D.
    【点睛】
    本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
    10、C
    【分析】
    先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
    【详解】
    解:∵AB∥CD,
    ∴∠1=∠CEF,
    又∵∠2+∠CEF=180°,
    ∴∠2+∠1=180°,
    ∵∠2=2∠1,
    ∴3∠1=180°,
    ∴∠1=60°,
    ∴∠2=120°,
    故选C.
    【点睛】
    本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
    二、填空题
    1、35°
    【分析】
    根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
    【详解】
    解:∵OE⊥AB,
    ∴∠AOE=90°,
    ∵ ,
    ∴∠AOC=90°- ,
    ∴∠BOD=∠AOC= ,
    故答案为:35°.
    【点睛】
    本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
    2、34°
    【分析】
    根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.
    【详解】
    解:平分,




    故答案为
    【点睛】
    本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.
    3、bcm<BD<a cm
    【分析】
    根据垂线段最短,可得AB与BD的关系,BD与BC的关系,可得答案.
    【详解】
    解:由垂线段最短,得BD<AB=acm,BD>BC=bcm,
    即bcm<BD<acm,
    故答案为:bcm<BD<acm.
    【点睛】
    本题考查了垂线短的性质,直线外的点到直线的距离:垂线段最短.
    4、35
    【分析】
    根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.
    【详解】
    解:∵∠AOD=70°,∠AOD+∠BOD=180°,
    ∴∠BOD=110°,
    ∵OC是∠DOB的平分线,
    ∴ ,
    ∵OD⊥OE,
    ∴∠DOE=90°,
    ∴∠BOE=∠BOD-∠DOE=20°,
    ∴∠COE=∠BOC-∠BOE=35°.
    故答案为:35
    【点睛】
    本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.
    5、20°或125°或20°
    【分析】
    根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.
    【详解】
    解:∵∠1与∠2的两边分别平行,
    ∴∠1,∠2相等或互补,
    ①当∠1=∠2时,
    ∵∠2=3∠1-40°,
    ∴∠2=3∠2-40°,
    解得∠2=20°;
    ②当∠1+∠2=180°时,
    ∵∠2=3∠1-40°,
    ∴∠1+3∠1-40°=180°,
    解得∠1=55°,
    ∴∠2=180°-∠1=125°;
    故答案为:20°或125°.
    【点睛】
    本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.
    三、解答题
    1、(1)见解析;(2)18.
    【分析】
    (1)直接利用网格结合平行线的判定方法得出答案;
    (2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
    【详解】
    解:(1)如图所示:点M,点N即为所求;
    (2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.
    【点睛】
    本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
    2、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4
    【分析】
    (1)根据直线定义即可画直线AB;
    (2)根据射线定义即可画直线BC;
    (3)根据线段定义即可连接AC并延长到点D,使得CD=AC;
    (4)通过画图、测量,即可得点B到点D的距离.
    (5)通过画图、测量,即可得点D到直线AB的距离.
    【详解】
    解:(1)如图,直线AB即为所求;
    (2)如图,射线BC即为所求;
    (3)如图,线段CD即为所画;
    (4)通过画图、测量,点B到点D的距离约为3.5cm,
    故答案为:3.5;
    (5)通过画图、测量,点D到点AB的距离DE约为1.4cm
    故答案为:1.4
    【点睛】
    本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.
    3、(1)见解析;(2)150°
    【分析】
    (1)根据画角平分线的方法,画出角平分线即可;
    (2)先求出的度数,然后由角平分线的定义,即可求出答案.
    【详解】
    解:(1)如图,OD即为平分线
    (2)解:∵,
    ∴,

    ∴;
    【点睛】
    本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
    4、(1)见解析;(2)∠B=38°.
    【分析】
    (1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
    (2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
    【详解】
    (1)∵AB∥DG,
    ∴∠BAD=∠1,
    ∵∠1+∠2=180°,
    ∴∠BAD+∠2=180°.
    ∵AD∥EF .
    (2)∵∠1+∠2=180°且∠2=142°,
    ∴∠1=38°,
    ∵DG是∠ADC的平分线,
    ∴∠CDG=∠1=38°,
    ∵AB∥DG,
    ∴∠B=∠CDG=38°.
    【点睛】
    本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
    5、(1)120;150;(2)30°;(3)30,=;(4)150;30.
    【分析】
    (1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
    (2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
    (3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
    (4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
    【详解】
    解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
    ∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
    故答案为120;150;
    (2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
    由(1)得∠BOC=120°,
    ∴∠BOM=∠BOC=60°,
    又∵∠MON=∠BOM+∠BON=90°,
    ∴∠BON=90°﹣60°=30°.
    故答案为30°;
    (3)∵∠AOD=∠BON(对顶角),∠BON=30°,
    ∴∠AOD=30°,
    又∵∠AOC=60°,
    ∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
    故答案为30,=;
    (4)∵MN⊥AB,
    ∴∠AON与∠MNO互余,
    ∵∠MNO=60°(三角板里面的60°角),
    ∴∠AON=90°﹣60°=30°,
    ∵∠AOC=60°,
    ∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
    ∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
    ∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
    故答案为150;30.
    【点睛】
    本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
    6、(1);(2)∠ABC的度数改变,度数为.
    【分析】
    (1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
    (2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
    【详解】
    (1)如图1,过点作.
    ∵,
    ∴,
    ∴.
    ∵平分平分,,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)的度数改变.
    画出的图形如图2,过点作.
    ∵平分,平分,,
    ∴ .
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
    7、(1)见解析;(2)72°
    【分析】
    (1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
    (2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
    【详解】
    解:(1)∵,∠2+∠DFE=180°,
    ∴∠3=∠DFE,
    ∴EF//AB,
    ∴∠ADE=∠1,
    又∵,
    ∴∠ADE=∠B,
    ∴DE//BC,
    (2)∵平分,
    ∴∠ADE=∠EDC,
    ∵DE//BC,
    ∴∠ADE=∠B,

    ∴∠5+∠ADE+∠EDC==180°,
    解得:,
    ∴∠ADC=2∠B=72°,
    ∵EF//AB,
    ∴∠2=∠ADC=180°-108°=72°,
    【点睛】
    本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    8、(1)BC与⊙O相切,见解析;(2).
    【分析】
    (1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到OD∥AC,根据平行线的性质得到∠ODB=∠ACB,推出OD⊥BC,根据切线的判定定理即可得到结论;
    (2)根据平行线分线段成比例定理得到,于是得到结论.
    【详解】
    解:(1)BC与⊙O相切,
    理由:连接OD,
    ∵OE=OD,
    ∴∠OED=∠ODE,
    ∵AE=AF,
    ∴∠OED=∠F,
    ∴∠ODE=∠F,
    ∴OD∥AC,
    ∴∠ODB=∠ACB,
    ∵DC⊥AF,
    ∴∠ACB=90°,
    ∴∠ODB=90°,
    ∴OD⊥BC,
    ∵OD是⊙O的半径,
    ∴BC与⊙O相切;
    (2)∵OD∥AC,
    ∴,
    ∵AE=5,AC=4,
    即,
    ∴BE=.
    【点睛】
    本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.
    9、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
    【分析】
    (1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
    (2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
    (3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
    【详解】
    证明:(1)结论为MR∥NP.
    如题图1∵AB∥CD,
    ∴∠EMB=∠END,
    ∵MR平分∠EMB,NP平分∠EBD,
    ∴,
    ∴∠EMR=∠ENP,
    ∴MR∥BP;
    故答案为MR∥BP;
    (2)结论为:MR∥NP.
    如题图2,∵AB∥CD,
    ∴∠AMN=∠END,
    ∵MR平分∠AMN,NP平分∠EBD,

    ∴∠RMN=∠ENP,
    ∴MR∥NP;
    (3)结论为:MR⊥NP.
    如图,设MR,NP交于点Q,过点Q作QG∥AB,
    ∵AB∥CD,
    ∴∠BMN+∠END=180°,
    ∵MR平分∠BMN,NP平分∠EBD,
    ∴,
    ∴∠BMR+∠NPD=,
    ∵GQ∥AB,AB∥CD,
    ∴GQ∥CD∥AB,
    ∴∠BMQ=∠GQM,∠GQN=∠PND,
    ∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
    ∴MR⊥NP,
    【点睛】
    本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
    10、(1)由①②得③,由①③得②,由②③得①;(2)由①②得③,见解析
    【分析】
    (1)分别以其中2句话为条件,第三句话为结论可写出3个命题;
    (2)根据平行线的判定与性质对3个命题分别进行证明,判断它们的真假.
    【详解】
    (1)由①②得③;由①③得②;由②③得①.
    (2)证明:由①②得③;
    ∵ABCD;
    ∴∠EAB=∠C
    又∵∠B=∠C;
    ∴∠EAB=∠B
    ∴CEBF;
    ∴∠E=∠F.
    【点睛】
    本题考查了命题与定理,平行线的判定与性质,掌握平行线的判定定理与性质定理是解题的关键.
    已知:如图,b∥a,c∥a,
    求证:b∥c;
    证明:作直线DF交直线a、b、c分
    别于点D、E、F,
    ∵a∥b,∴∠1=∠4,又∵a∥c,
    ∴∠1=∠5,
    ∴b∥c.

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试课后测评:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试课后测评,共28页。试卷主要包含了如图所示,下列说法错误的是,如图所示,直线l1∥l2,点A,如图,,交于点,,,则的度数是,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,在等内容,欢迎下载使用。

    沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题,共28页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中正确的个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map