![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12710931/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12710931/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合测评练习题(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12710931/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共29页。试卷主要包含了如图,在,下列说法中正确的有,下列说法中正确的有个等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
2、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )
A.相等 B.互补 C.相等或互补 D.不能确定
3、如图,已知直线,相交于O,平分,,则的度数是( )
A. B. C. D.
4、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )
A.千米 B.千米 C.千米 D.千米
5、下列说法中正确的有( )
①一条直线的平行线只有一条.
②过一点与已知直线平行的直线只有一条.
③因为a∥b,c∥d,所以a∥d.
④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B.2个 C.3个 D.4个
6、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
7、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
A.140° B.100° C.80° D.40°
8、下列说法中正确的有( )个
①两条直线被第三条直线所截,同位角相等;
②同一平面内,不相交的两条线段一定平行;
③过一点有且只有一条直线垂直于已知直线;
④经过直线外一点有且只有一条直线与这条直线平行;
⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
A.1 B.2 C.3 D.4
9、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
10、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.
2、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
3、张雷同学从A地出发沿北偏东60°的方向行驶到B地,再由B地沿南偏西35°的方向行驶到C地,则∠ABC=____度.
4、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.
5、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
三、解答题(10小题,每小题5分,共计50分)
1、(1)用三角尺或量角器画已知直线的垂线,这样的垂线能画出几条?
(2)经过直线上一点A画的垂线,这样的垂线能画出几条?
(3)经过直线外一点B画的垂线,这样的垂线能画出几条?
2、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
(1)如图1,求∠DOE的度数;
(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.
3、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
4、如图,在中,平分交于D,平分交于F,已知,求证:.
5、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
6、如图1,在平面直角坐标系中,,,且满足,过作轴于.
(1)求,的值;
(2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
(3)若过作交轴于,且,分别平分,,如图2,图3,
①求:的度数;
②求:的度数.
7、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
8、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
证明:过点E作直线EF∥CD,
∠2=______,( )
AB∥CD(已知),EF∥CD
_____∥EF,( )
∠B=∠1,( )
∠1+∠2=∠BED,
∠B+∠D=∠BED,( )
方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.
9、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数
10、如图所示,从标有数字的角中找出:
(1)直线CD和AB被直线AC所截构成的内错角.
(2)直线CD和AC被直线AD所截构成的同位角.
(3)直线AC和AB被直线BC所截构成的同旁内角.
-参考答案-
一、单选题
1、D
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
2、C
【分析】
分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.
【详解】
解:如图所示:BE⊥AE,BC⊥AC,
∴∠BCF=∠AEF=90°,
∴∠A+∠AFE=90°,∠B+∠BFC=90°,
∴∠A=∠B
如图所示:BD⊥AD,BC⊥AC,
∴∠ADE=∠BCE=90°,
∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,
∴∠A=∠CBE,
∵∠CBE+∠DBC=180°,
∴∠A+∠DBC=180°,
综上所述,∠A与∠B的关系是相等或互补,
故选C.
【点睛】
本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.
3、C
【分析】
先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
【详解】
解:∵OA平分∠EOC,∠EOC=100°,
∴∠AOC=∠EOC=50°,
∴∠BOC=180°﹣∠AOC=130°.
故选:C.
【点睛】
本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
4、B
【分析】
根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
【详解】
解:根据两直线平行,内错角相等,可得∠ABG=48°,
∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
∴AB⊥BC,
∴A地到公路BC的距离是AB=8千米,
故选B.
【点睛】
此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
5、A
【分析】
根据平行线的性质,平行线的判定判断即可.
【详解】
∵一条直线的平行线有无数条,
∴①的说法不正确;
∵经过直线外一点有且只有一条直线与已知直线平行,
∴②的说法不正确,④的说法正确;
∵a∥b,c∥d,无法判定a∥d
∴③的说法不正确.
只有一个是正确的,
故选A.
【点睛】
本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
6、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
7、B
【分析】
根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
【详解】
解:∵∠AOE+∠BOE=180°,
∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
又∵OE平分∠AOC,
∴∠AOE=∠COE=40°,
∴∠BOC=∠BOE﹣∠COE
=140°﹣40°
=100°,
故选:B.
【点睛】
本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
8、A
【分析】
根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.
【详解】
①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;
②同一平面内,不相交的两条直线一定平行,故②不正确;
③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;
④经过直线外一点有且只有一条直线与这条直线平行,故④正确
⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.
故正确的有④,共1个,
故选A.
【点睛】
本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.
9、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
10、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
二、填空题
1、40°
【分析】
根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
【详解】
∵AD∥BC,∠B=40°,
∴∠EAD=∠B=40°,
∵AD是∠EAC的平分线,
∴∠DAC=∠EAD=40°,
故答案为:40°
【点睛】
本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
2、130°或50°
【分析】
根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
【详解】
①如图,
,
,
②如图,
,
,
综上所述,或
故答案为:130°或50°
【点睛】
本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
3、25
【分析】
根据题意作出图形即可判断求解.
【详解】
解:如图所示,
∵AD∥BE,∠1=60°,
∴∠ABE=∠DAB=60°,
又∵∠CBE=35°,
∴∠ABC=60°﹣35°=25°.
故答案为:25.
【点睛】
此题主要考查方位角的计算,涉及了平行线的有关性质,解题的关键是根据题意作出图形,即可进行求解.
4、> 3 2 垂线段
【分析】
根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
【详解】
解:∵∠AOB=90°,
∴AO⊥BO,AB>BO,
∵OA=3cm,OB=2cm,
∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
故答案为:>,3,2,垂线段.
【点睛】
本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
5、5
【分析】
由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
【详解】
解:∵AB∥CD∥EF,
∴∠AGE=∠GAB=∠DCA;
∵BC∥AD,
∴∠GAE=∠GCF;
又∵AC平分∠BAD,
∴∠GAB=∠GAE;
∵∠AGE=∠CGF.
∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
∴图中与∠AGE相等的角有5个
故答案为:5.
【点睛】
本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
三、解答题
1、(1)能画无数条;(2)能画一条;(3)能画一条
【分析】
用三角板的一条直角边与已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和点A(或点B)重合,过点A(或点B)沿直角边向已知直线画直线即可,在两线相交处标出垂足(直角符号),据此即可解答.
【详解】
解:(1)根据题意得:画已知直线的垂线,这样的垂线能画出无数条;
(2)根据题意得:经过直线上一点A画的垂线,这样的垂线能画出一条;
(3)根据题意得:经过直线外一点B画的垂线,这样的垂线能画出一条.
【点睛】
本题主要考查了画已知直线的垂线,熟练掌握同一平面内,过已知点有且只有一条直线与已知直线垂直是解题的关键.
2、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【分析】
(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
【详解】
解:(1)∵EO⊥AB,
∴∠BOE=90°,
∴∠COE+∠BOD=90°,
∵∠EOC:∠BOD=7:11,
∴∠COE=35°,∠BOD=55°,
∴∠DOE=∠BOD+∠BOE=145°;
(2)∵MN⊥CD,
∴∠COM=90°,
∴∠EOM=∠COE+∠COM=125°,
∵∠BOD=55°,
∴∠BOC=180°-∠BOD=125°,
∴∠AOD=∠BOC=125°,
∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
【点睛】
本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
3、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
4、见解析
【分析】
根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.
【详解】
证明:(已知),
(同位角相等,两直线平行),
(两直线平行,同位角相等),
平分,平分(已知),
,(角平分线的定义),
(等量代换).
(同位角相等,两直线平行).
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.
5、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
6、(1),;(2)存在,或;(3)①;②
【分析】
(1)根据非负数的和为零,则每一个数为零,列等式计算即可;
(2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
(3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
②作,利用平行线的性质,角的平分线的定义,计算即可.
【详解】
解:(1)∵,
∴m+4=0,n-4=0,
∴,.
(2)存在,
设点P的坐标为(n,0),则OP=|n|,
∵A(-4,0),C(4,4),
∴B(4,0),AB=4-(-4)=8,
∵,,且和的面积相等,
∴,
∴OP=AB=8,
∴|n|=8,
∴n=8或n=-8,
∴或;
(3)①∵,
∴,
又∵,
∴.
②作,如图,
∵,
∴,
∴,,
∴,
∵,分别平分,,
∴,,
∴,
即.
【点睛】
本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
7、∠2=115°,∠3=65°,∠4=115°
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
8、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【分析】
过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
【详解】
解:过点E作直线EF∥CD,
∠2=∠D,(两直线平行,内错角相等)
AB∥CD(已知),EF∥CD
AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
∠B=∠1,(两直线平行,内错角相等)
∠1+∠2=∠BED,
∠B+∠D=∠BED,(等量代换 )
方法与实践:如图②,
∵直线AB∥CD
∴∠BOD=∠D=53°
∵∠BOD=∠E+∠B
∴∠E=∠BOD-∠B=53°- 22°=31°.
故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【点睛】
本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
9、55°
【分析】
由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
【详解】
解:∵∠AOD=70°,
∴∠COB=∠AOD=70°,
∵OE平分∠BOC,
∴∠EOB=∠EOC=35°,
∵∠FOE=90°,
∴∠AOF=180°-∠EOB-∠FOE=55°.
【点睛】
本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
10、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
【分析】
根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
【详解】
解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
【点睛】
此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共33页。试卷主要包含了如图,不能推出a∥b的条件是,下列命题正确的是,如图,已知,,平分,则,如图,直线AB等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练,共30页。试卷主要包含了下列说法,如图木条a,下列说法中,正确的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共32页。