初中数学第十四章 三角形综合与测试课时训练
展开
这是一份初中数学第十四章 三角形综合与测试课时训练,共34页。
沪教版七年级数学第二学期第十四章三角形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3 B.4 C.5 D.6
2、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21 B.24 C.27 D.30
3、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图,
∵∠A=70°,∠B=63°,
且∠ACD=133°(量角器测量所得)
又∵133°=70°+63°(计算所得)
∴∠ACD=∠A+∠B(等量代换).
证法2:如图,
∵∠A+∠B+∠ACB=180°(三角形内角和定理),
又∵∠ACD+∠ACB=180°(平角定义),
∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
∴∠ACD=∠A+∠B(等式性质).
下列说法正确的是( )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
4、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
A.7 B.8 C.10 D.12
5、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
6、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
7、等腰三角形的一个角是80°,则它的一个底角的度数是( )
A.50° B.80° C.50°或80° D.100°或80°
8、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
9、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为( )
A.15° B.20° C.25° D.30°
10、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
2、如图,,点G分别为AD与CF的中点,若,则AC=______.
3、在平面直角坐标系中,△ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得△ABP为等腰三角形,那么点P的坐标除点(,0)外,还可以是_____.
4、如图,PA=PB,请你添加一个适当的条件:___________,使得△PAD≌△PBC.
5、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
三、解答题(10小题,每小题5分,共计50分)
1、直线l经过点A,在直线l上方,.
(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
2、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.
3、已知:
(1)O是∠BAC内部的一点.
①如图1,求证:∠BOC>∠A;
②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
(2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.
4、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
5、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.
(1)求DEC的度数;
(2)试说明直线
6、如图,AD为△ABC的角平分线.
(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF= ;
(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为 .(用含m,n的式子表示)
7、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,,,.求和的度数.
8、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
9、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
10、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
-参考答案-
一、单选题
1、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
2、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
3、D
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
4、C
【分析】
作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
【详解】
解:如图,
是等边三角形,
,
∵D为AC中点,
∴,,,
,
作点关于的对称点,连接交于,连接,此时的值最小.最小值,
,,
,
,
,
,
是等边三角形,
,
的最小值为.
故选:C.
【点睛】
本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
5、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
6、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
7、C
【分析】
已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
【详解】
解:等腰三角形的一个角是80°,
当80º为底角时,它的一个底角是80º,
当80º为顶角时,它的一个底角是,
则它的一个底角是50º或80º.
故选:C.
【点睛】
本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
8、C
【分析】
根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
【详解】
解:∵BF是∠AB的角平分线,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠DFB=∠CBF,
∴∠DBF=∠DFB,
∴BD=DF,
∴△BDF是等腰三角形;故①正确;
同理,EF=CE,
∴DE=DF+EF=BD+CE,故②正确;
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵BF平分∠ABC,CF平分∠ACB,
∴,
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
∴∠BFC=180°﹣65°=115°,故③正确;
当△ABC为等腰三角形时,DF=EF,
但△ABC不一定是等腰三角形,
∴DF不一定等于EF,故④错误.
故选:C.
【点睛】
本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
9、A
【分析】
先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
【详解】
解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
∴∠EFD=60°,∠ABC=45°,
∵BC∥AD,
∴∠EFD=∠FBC=60°,
∴∠ABF=∠FBC-∠ABC=15°,
故选A.
【点睛】
本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
10、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
二、填空题
1、角边角或
【分析】
根据全等三角形的判定定理得出即可.
【详解】
解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
故答案为:角边角或ASA.
【点睛】
本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
2、4
【分析】
根据SAS证明,由全等三角形的性质得,,由,得,推出,都是等腰三角形,故得,设,则,,,列出等量关系式解出,即可得出.
【详解】
∵点G分别为AD与CF的中点,
∴,,,
∴,
∴,,
∵,,
∴,
∴,都是等腰三角形,
∴,
设,则,,,
∴,
解得:,
∴.
故答案为:4.
【点睛】
本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.
3、(,0)、(,0)、(9,0)
【分析】
先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况①当PB=AB时.②当PA=PB时,③当PA=AB时,讨论计算即可.
【详解】
设P(a,0),
∵A(0,3),B(4,0),
∴PB=|a-4|,PA2=a2+9,AB=5,
∵△ABP是等腰三角形,
∴①当PB=AB时,
∴|a-4|=5,
∴a=-1或9,
∴P(-1,0)或(9,0),
②当PA=PB时,
∴(a-4)2=a2+9,
∴a=,
∴P(,0),
③当PA=AB时,
∴a2+9=25,
∴a=4(舍)或a=-4,
∴P(-4,0).
即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0).
【点睛】
本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键.
4、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
【分析】
已有∠P是公共角和边PA=PB,根据全等三角全等的条件,利用AAS需要添加∠D=∠C,根据ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根据边角边需要添加 PD=PC 或PC=PD.填入一个即可.
【详解】
解:∵PA=PB,∠P是公共角,
∴根据AAS可以添加∠D=∠C,,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠D=∠C,
∴△PAD≌△PBC(AAS).
根据ASA可以添加∠PAD=∠PBC,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠PAD=∠PBC,
∴△PAD≌△PBC(ASA).
根据ASA可以添加∠DBC=∠CAD,
∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠PAD=∠PBC,
∴△PAD≌△PBC(ASA).
根据SAS可添加PD=PC
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,PD=PC,
∴△PAD≌△PBC(SAS).
根据SAS可添加BD=AC,
∵PA=PB,BD=AC,
∴PA+AC=PB+BD即PC=PD,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,PD=PC,
∴△PAD≌△PBC(SAS).
故答案为:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
【点睛】
本题考查三角形全等添加条件,掌握三角形全等判定方法与定理是解题关键.
5、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
三、解答题
1、(1)见解析;(2)猜想:,见解析;(3)见解析
【分析】
(1)先证明和,再根据证明即可;
(2)根据AAS证明得,,进一步可得出结论;
(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
【详解】
解:(1)证明:∵,,
∴,
∴
∵,
∴
∴,
在与中
,
∴
(2)猜想:,
∵
∴,
∴,
在与中
∴,
∴,,
∴
(3)分别过点C、E作,,
同(1)可证,,
∴,
∴,
∵,,
∴
在与中
∴,
∴,
∴G为CE的中点.
【点睛】
本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
2、见解析
【分析】
由和是顶角相等的等腰三角形,得出知、、,证即可得证.
【详解】
解:和是顶角相等的等腰三角形,得出,
,,,
在和中,
,
,
.
【点睛】
本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
3、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
【分析】
(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
②延长AO至点E,根据三角形外角性质解答即可;
(2)根据三角形外角性质和三角形内角和定理解答即可.
【详解】
证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
∴∠BOC>∠A;
②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
∵OA=OB=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;
(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
证明:如图所示,设∠B=x,
∵OA=OB=OC,
∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
即∠BOC=2∠BAC.
【点睛】
此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
4、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
5、(1)90°;(2)见解析
【分析】
(1)根据三角形内角和定理即可求解;
(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.
【详解】
解:(1)∵AC是BCD的平分线
∴
∵
∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;
(2)∵DE平分∠ADC,CA平分∠BCD
∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°
∵∠ADC+∠BCD=116°+64°=180°
∴
【点睛】
本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.
6、
(1)3
(2)12
(3)
【分析】
(1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
(2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
(3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
(1)
∵AD是△ABC的平分线,
∴∠BAD=∠CAD,
∵BE⊥AD,
∴∠BEA=∠FEA,
在△AEF和△AEB中,
,
∴△AEF≌△AEB(ASA),
∴AF=AB=4,
∵AC=7
∴CF=AC-AF=7-4=3,
故答案为:3;
(2)
延长CG、AB交于点H,如图,
由(1)知AC=AH,点G为CH的中点,
设S△BGC=S△HGB=a,
根据△ACH的面积可得:
S△ABC+2a=2(6+a),
∴S△ABC=12;
(3)
在AC上取AN=AB,如图,
∵AD是△ABC的平分线,
∴∠NAD=∠BAD,
在△ADN与△ADB中,
,
∴△ADN≌△ADB(SAS),
∴∠AND=∠B,DN=BD,
∵∠B=2∠C,
∴∠AND=2∠C,
∴∠C=∠CDN,
∴CN=DN=AC-AB=n-m,
∴BD=DN=n-m,
根据△ABD和△ACD的高相等,面积比等于底之比可得:
,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
7、87°,40°
【分析】
根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.
【详解】
解:∵,,
∴,
∵,
∴.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.
8、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
9、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
10、(1)见解析;(2)见解析;(3)108°
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共34页。试卷主要包含了定理等内容,欢迎下载使用。
这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。