初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题
展开
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题,共30页。试卷主要包含了若一个三角形的三个外角之比为3,下列说法不正确的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列三角形与下图全等的三角形是( )
A. B. C. D.
2、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
3、下列长度的三条线段能组成三角形的是( )
A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
4、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
5、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
6、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
7、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )
A.12 B.10 C.8 D.6
8、下列说法不正确的是( )
A.有两边对应相等的两个直角三角形全等;
B.等边三角形的底角与顶角相等;
C.有一个角是的直角三角形是等腰直角三角形;
D.如果点与点到直线的距离相等,那么点与点关于直线对称.
9、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
10、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,将△ABC绕点C顺时针旋转30°得到△A′B′C,A、B分别与A′、B′对应,CA′交AB于点M,则CM的长为 ___.
2、如图,点是上的一点,,则下列结论:①;②;③;④,其中成立的有______个.
3、若,则以、为边长的等腰三角形的周长为________.
4、如图,在△AB1C1中,AC1=B1C1,∠C1=20°,在B1C1上取一点C2,延长AB1到点B2,使得B1B2=B1C2,在B2C2上取一点C3,延长AB2到点B3,使得B2B3=B2C3,在B3C3上取一点C4,延长AB3到点B4,使得B3B4=B3C4,……,按此操作进行下去,那么第2个三角形的内角∠AB2C2=________°;第n个三角形的内角∠ABnCn=________°.
5、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).
三、解答题(10小题,每小题5分,共计50分)
1、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
2、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
3、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
4、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
5、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.
(1)求证:;
(2)若,求的度数.
6、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.
(1)求DEC的度数;
(2)试说明直线
7、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
8、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
9、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
求证:AB=AC.
以下是甲、乙两位同学的作法.
甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
(1)对于甲、乙两人的作法,下列判断正确的是( );
A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
(2)选择一种你认为正确的作法,并证明.
10、如图,AD,BC相交于点O,AO=DO.
(1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
(2)根据已知及(1)中添加的一个条件,证明AB=DC.
-参考答案-
一、单选题
1、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
2、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
3、C
【分析】
根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
【详解】
解:A.∵3+4<8,
∴不能组成三角形,故本选项不符合题意;
B.∵4+4<10,
∴不能组成三角形,故本选项不符合题意;
C.∵5+6>10,
∴能组成三角形,故本选项符合题意;
D.∵5+6=11,
∴不能组成三角形,故本选项不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
4、C
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
5、A
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
6、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
7、A
【分析】
利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
【详解】
解:由题意可知:∠ABE=∠AED=∠ECD=90°,
,,
,
在和中,
,
,
,
故选:A.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
8、D
【分析】
利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
【详解】
解:A、有两边对应相等的两个直角三角形全等,正确;
B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
C、有一个角是的直角三角形是等腰直角三角形,正确;
D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
9、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
10、D
【分析】
根据全等三角形的性质求解即可.
【详解】
解:∵≌,和是对应角,和是对应边,
∴,,
∴,
∴选项A、B、C错误,D正确,
故选:D.
【点睛】
本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
二、填空题
1、
【分析】
根据旋转的性质可得,,所以,由题意可得:,为等边三角形,即可求解.
【详解】
解:∵,,
∴,
由旋转的性质可得,,
∴,
∴为等边三角形,
∴,
故答案为:
【点睛】
此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解.
2、1
【分析】
根据,得出AC=EB<BC,可判断①;根据,可得∠ADC=∠ECB,得出AD∥BC,根据BC与BE相交,可判断②;根据,得出∠ADC=∠ECB,根据直角三角形两锐角互余得出∠ADC+∠ACD=90°,利用等量代换得出∠ECB+∠ACD=90°可判断③;,得出AD=EC,DC=CB,根据线段和AD+DE=EC+DE=DC=CB>BE,可判断④即可.
【详解】
解:∵点是上的一点,,
∴AC=EB<BC,故①不正确;
∵,
∴∠ADC=∠ECB,
∴AD∥BC,
∵BC与BE相交,故②不正确;
∵,
∴∠ADC=∠ECB,
∵∠ADC+∠ACD=90°,
∴∠ECB+∠ACD=90°即∠ACB=90°,故③正确;
∵,
∴AD=EC,DC=CB,
∴AD+DE=EC+DE=DC=CB>BE,故④不正确;
∴其中成立的有1个.
故答案为1.
【点睛】
本题考查全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定,掌握全等三角形的性质,直角三角形两锐角互余,线段和差,平行线判定是解题关键.
3、17
【分析】
先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.
【详解】
解:∵,
∴,,
解得:,,
①若是腰长,则底边为7,三角形的三边分别为3、3、7,
∵,
∴3、3、7不能组成三角形;
②若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,
周长为:,
∴以、为边长的等腰三角形的周长为17,
故答案为:17.
【点睛】
本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解.
4、40
【分析】
先根据等腰三角形的性质求出∠C1B1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠B1B2C2,∠C3B3B2及∠C4B3B2的度数,找出规律即可得出∠ABnCn的度数.
【详解】
解:△AB1C1中,AC1=B1C1,∠C1=20°,
∴∠C1B1A= ,
∵B1B2=B1C2,,∠C1B1A是△B1B2C2的外角,
∴∠B1B2C2= ;
同理可得,
∠C3B3B2=20°,∠C4B3B2=10°,
∴∠ABnCn=.
故答案为:40,.
【点睛】
本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1B2C2,∠C3B3B2及∠C4B3B2的度数,找出规律是解答此题的关键.
5、①④
【分析】
根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.
【详解】
解: ,
是的余角;故①符合题意;
,
互为余角,互为余角,
,
互为余角,
所以图中互余的角共有4对,故②不符合题意;
与互补;
∵∠1+∠DAC=90°,∠BAD+∠DAC=90°,
∴∠1=∠BAD,
∵∠BAD+∠DAE=180°,
∴∠1+∠DAE=180°,
∴∠1与∠DAE互补, 故③不符合题意;
,
所以与互补的角有 共3个,故④符合题意;
所以正确的结论有:①④
故答案为:①④
【点睛】
本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
2、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
3、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
4、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
5、(1)见解析;(2)
【分析】
(1)由旋转的性质可得,,再证明,结合 从而可得结论;
(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.
【详解】
证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
∴,,
∵,,
∴,
∴,
∴(SAS),
∴.
(2)解:由(1)知
,,,
∴,
∴.
【点睛】
本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.
6、(1)90°;(2)见解析
【分析】
(1)根据三角形内角和定理即可求解;
(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.
【详解】
解:(1)∵AC是BCD的平分线
∴
∵
∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;
(2)∵DE平分∠ADC,CA平分∠BCD
∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°
∵∠ADC+∠BCD=116°+64°=180°
∴
【点睛】
本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.
7、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
8、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
9、(1)C ;(2)见解析
【分析】
(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
(2)按照乙的分析方法进行即可.
【详解】
(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
故选C;
(2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
∵D为BC中点.
∴.
在△CAD和△BED中
∴△CAD≌△BED(SAS).
∴,
∵AD平分∠BAC,
∴
∴
∴
∴AB=AC
∴△ABC为等腰三角形
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
10、(1)OB=OC(或,或);(2)见解析
【分析】
(1)根据SAS添加OB=OC即可;
(2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
【详解】
解:(1)添加的条件是:OB=OC(或,或)
证明:在和中
所以,△AOB≌△DOC
(2)由(1)知,△AOB≌△DOC
所以,AB=DC.
【点睛】
本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题,共30页。试卷主要包含了下列四个命题是真命题的有,下列三个说法等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试课后练习题,共28页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试练习,共29页。试卷主要包含了下列叙述正确的是,已知长方形纸片ABCD,点E等内容,欢迎下载使用。