年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试卷(精选含答案)

    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试卷(精选含答案)第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试卷(精选含答案)第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步训练试卷(精选含答案)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十三章 相交线 平行线综合与测试精练

    展开

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试精练,共31页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列各图中,∠1与∠2是对顶角的是(  )
    A. B.
    C. D.
    2、下列说法中正确的个数是(  )
    (1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
    (2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
    (3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
    (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
    A.1 B.2 C.3 D.4
    3、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设(  )
    A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
    4、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为(  )

    A.30° B.40° C.50° D.60°
    5、如图所示,下列说法错误的是(  )

    A.∠1和∠3是同位角 B.∠1和∠5是同位角
    C.∠1和∠2是同旁内角 D.∠5和∠6是内错角
    6、如图,,能表示点到直线(或线段)的距离的线段有( )

    A.五条 B.二条 C.三条 D.四条
    7、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )

    A.39° B.41° C.49° D.51°
    8、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )

    A.40° B.50° C.140° D.150°
    9、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    10、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是________.
    2、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.

    3、如图在△ABC中,AB=AC=5,S△ABC=10,AD是△ABC的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为______.

    4、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.
    5、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
    (1)过点M画BC的平行线MN交AB于点N;
    (2)过点D画BC的垂线DE,交AB于点E;
    (3)点E到直线BC的距离是线段    的长度.

    2、已知,,三点在同一条直线上,平分,平分.

    (1)若,如图1,则 ;
    (2)若,如图2,求的度数;
    (3)若如图3,求的度数.
    3、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    4、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
    (1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
    (2)当点E落在直线AC上时,直接写出∠BAD的度数;
    (3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.

    5、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.

    (1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
    (2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
    (3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
    6、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
    将下列证明过程补充完整:

    证明:∵CE平分(已知),
    ∴__________(角平分线的定义),
    ∵(已知),
    ∴___________(等量代换),
    ∴(______________).
    (探究)已知:如图②,点E在AB上,且CE平分,.求证:.

    (应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.

    7、请把下列证明过程及理由补充完整(填在横线上):
    8、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
    (1)试说明∠1=∠2;
    (2)若∠BOC=4∠2,求∠AOC的大小.

    9、如图,在ABC中,DEAC,DFAB.
    (1)判断∠A与∠EDF之间的大小关系,并说明理由.
    (2)求∠A+∠B+∠C的度数.

    10、如图,平面上有三个点A、B、C.

    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据对顶角的定义作出判断即可.
    【详解】
    解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.
    故选:B.
    【点睛】
    本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
    2、C
    【分析】
    根据平行线的性质分析判断即可;
    【详解】
    在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
    在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
    在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
    综上所述,正确的是(1)(3)(4);
    故选C.
    【点睛】
    本题主要考查了平行线的性质,准确分析判断是解题的关键.
    3、C
    【分析】
    用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
    【详解】
    解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
    用反证法时应假设结论不成立,
    即假设a与c不平行(或a与c相交).
    故答案为:C.
    【点睛】
    此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
    4、D
    【分析】
    根据平行线的性质和垂直的定义解答即可.
    【详解】
    解:∵BC⊥l3交l1于点B,
    ∴∠ACB=90°,
    ∵∠2=30°,
    ∴∠CAB=180°−90°−30°=60°,
    ∵l1l2,
    ∴∠1=∠CAB=60°.
    故选:D.
    【点睛】
    此题考查平行线的性质,关键是根据平行线的性质解答.
    5、B
    【分析】
    根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.
    【详解】
    解:A、∠1和∠3是同位角,故此选项不符合题意;
    B、∠1和∠5不存在直接联系,故此选项符合题意;
    C、∠1和∠2是同旁内角,故此选项不符合题意;
    D、∠1和∠6是内错角,故此选项不符合题意;
    故选B.
    【点睛】
    本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.
    6、A
    【分析】
    直接利用点到直线的距离的定义分析得出答案.
    【详解】
    解:线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    线段的长是点到的距离,
    故图中能表示点到直线距离的线段共有五条.
    故选:A.
    【点睛】
    此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.
    7、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,

    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    8、D
    【分析】
    由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
    【详解】
    解:∵拐弯前、后的两条路平行,
    ∴∠B=∠C=150°(两直线平行,内错角相等).
    故选:D.
    【点睛】
    本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
    9、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    10、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    二、填空题
    1、平行
    【分析】
    根据平行线的推论:平行于同一直线的两条直线互相平行,进行解答即可.
    【详解】
    解:小军在一张纸上画一条直线,再画这条直线的平行线,
    然后依次画前一条直线的平行线,当他画到第十条直线时,
    第十条直线与第一条直线的位置关系是:平行,
    故答案为:平行.
    【点睛】
    本题考查了平行线的推论,熟知平行于同一直线的两条直线互相平行是解本题的关键.
    2、,
    【分析】
    由,,可得再证明可得
    【详解】
    解: ,,





    故答案为:
    【点睛】
    本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
    3、4
    【分析】
    作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF即可得出答案.
    【详解】
    解:方法一:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,
    ∵S△ABC=×AB×CN,
    ∴CN=4,
    ∵E关于AD的对称点M,
    ∴EF=FM,
    ∴CF+EF=CF+FM=CM,
    根据垂线段最短得出:CM≥CN,
    即CF+EF≥4,
    即CF+EF的最小值是4.

    方法二:∵AB=AC,AD是△ABC的中线,
    ∴AD⊥BC,
    ∴点C与点B关于AD对称,
    过B作BE⊥AC于E,交AD于F,连接CF,
    则此时,CF+EF的值最小,且最小值为BE,
    ∵S△ABC=•AC•BE=10,
    ∴BE=4,
    ∴CF+EF的最小值4,

    故答案为:4.
    【点睛】
    本题考查了垂线段最短以及对称轴作图,结合等腰三角形的性质取E或C对称点连接是解题的关键.
    4、20°或125°或20°
    【分析】
    根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.
    【详解】
    解:∵∠1与∠2的两边分别平行,
    ∴∠1,∠2相等或互补,
    ①当∠1=∠2时,
    ∵∠2=3∠1-40°,
    ∴∠2=3∠2-40°,
    解得∠2=20°;
    ②当∠1+∠2=180°时,
    ∵∠2=3∠1-40°,
    ∴∠1+3∠1-40°=180°,
    解得∠1=55°,
    ∴∠2=180°-∠1=125°;
    故答案为:20°或125°.
    【点睛】
    本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.
    5、①
    【分析】
    根据相交线与平行线中的一些概念、性质判断,得出结论.
    【详解】
    ①等角的余角相等,故正确;
    ②中,需要前提条件:过直线外一点,故错误;
    ③中,相等的角不一定是对顶角,故错误;
    ④中,仅当两直线平行时,同位角才相等,故错误;
    ⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.
    故答案为:①.
    【点睛】
    本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.
    三、解答题
    1、(1)见解析;(2)见解析;(3)DE
    【分析】
    (1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
    (2)根据垂线的定义作图即可;
    (3)根据点到直线的距离的定义求解即可.
    【详解】
    解:(1)如图所示,点N即为所求;

    (2)如图所示,点E即为所求;

    (3)由题意可知:点E到直线BC的距离是线段DE的长度,
    故答案为:DE.
    【点睛】
    本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
    2、(1)90;(2)90°;(3)90°
    【分析】
    (1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
    (2)由,则,同(1)即可得出结果;
    (3)易证,同(1)得,,即可得出结果.
    【详解】
    解:(1),,三点在同一条直线上,



    平分,平分,
    ,,

    故答案为:90;
    (2),

    同(1)得:,,

    (3),

    同(1)得:,,

    【点睛】
    本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
    3、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    4、(1);(2);(3)的值为:或.
    【分析】
    (1)先求解 再利用角的和差关系可得答案;
    (2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
    (3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
    【详解】
    解:(1) ∠BAD=18°,∠EAD=∠BAD,




    (2)当落在的下方时,如图,


    当落在的上方时,如图,




    (3)当落在的内部时,如图,

    ∠CAE:∠BAD=7:4,

    当落在的外部时,如图,
    ∠CAE:∠BAD=7:4,

    设则


    解得:

    综上:的值为:或.
    【点睛】
    本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
    5、(1)60,75;(2)秒;(3)3或12或21或30
    【分析】
    (1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
    (2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
    (3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
    【详解】
    解:(1)∵∠BOE=90°,
    ∴∠AOE=90°,
    ∵∠AOC=α=30°,
    ∴∠EOC=90°-30°=60°,
    ∠AOD=180°-30°=150°,
    ∵OF平分∠AOD,
    ∴∠FOD=∠AOD=×150°=75°;
    故答案为:60,75;
    (2)当,.
    设当射线与射线重合时至少需要t秒,
    可得,解得:;
    答:当射线与射线重合时至少需要秒;
    (3)设射线转动的时间为t秒,
    由题意得:或或或,
    解得:或12或21或30.
    答:射线转动的时间为3或12或21或30秒.
    【点睛】
    本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
    6、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
    【分析】
    感知:读懂每一步证明过程及证明的依据,即可完成解答;
    探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
    应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
    【详解】
    感知
    ∵CE平分(已知),
    ∴ECD(角平分线的定义),
    ∵(已知),
    ∴ECD(等量代换),
    ∴(内错角相等,两直线平行).
    故答案为:ECD;ECD;内错角相等,两直线平行
    探究
    ∵CE平分,
    ∴,
    ∵,
    ∴,
    ∵.
    应用
    ∵BE平分∠DBC,
    ∴,
    ∵AE∥BC,
    ∴∠CBE=∠E,∠BAE+∠ABC=180゜,
    ∴∠E=∠ABE,
    ∵,
    ∴∠ABC=80゜


    【点睛】
    本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
    7、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
    【分析】
    根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
    【详解】
    证明:∵AD∥BC(已知),
    ∴∠3=∠CAD(两直线平行,内错角相等).
    ∵∠3=∠4(已知),
    ∴∠4=∠CAD(等量代换).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(等式的性质).
    即∠BAF=∠CAD.
    ∴∠4=∠BAF.(等量代换).
    ∴AB∥CD(同位角相等,两直线平行).
    【点睛】
    本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
    8、(1)见解析;(2)60°
    【分析】
    (1)利用同角的余角相等解答即可得出结论;
    (2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
    【详解】
    解:(1)∵OM⊥AB,ON⊥CD,
    ∴∠AOM=∠CON=90°,
    ∴∠AOC+∠1=90°,∠AOC+∠2=90°,
    ∴∠1=∠2.
    (2)∵OM⊥AB,
    ∴∠BOM=90°.
    ∵∠1=∠2,∠BOC=4∠2,
    ∴∠BOC=4∠1.
    ∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
    即3∠1=90°,
    ∴∠1=30°.
    ∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
    【点睛】
    本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
    9、(1)两角相等,见解析;(2)180°
    【分析】
    (1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
    (2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
    【详解】
    (1)两角相等,理由如下:
    ∵DE∥AC,
    ∴∠A=∠BED(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠EDF=∠BED(两直线平行,内错角相等),
    ∴∠A=∠EDF(等量代换).
    (2)∵DE∥AC,
    ∴∠C=∠EDB(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠B=∠FDC(两直线平行,同位角相等).
    ∵∠EDB+∠EDF+∠FDC=180°,
    ∴∠A+∠B+∠C=180°(等量代换).
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    10、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;

    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.

    相关试卷

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练:

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练,共30页。试卷主要包含了下列说法,如图木条a,下列说法中,正确的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。

    2021学年第十三章 相交线 平行线综合与测试精练:

    这是一份2021学年第十三章 相交线 平行线综合与测试精练,共26页。试卷主要包含了如图木条a,下列关于画图的语句正确的是.,如图,已知,,平分,则等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map