![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试题(含答案解析)第1页](http://m.enxinlong.com/img-preview/2/3/12709102/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试题(含答案解析)第2页](http://m.enxinlong.com/img-preview/2/3/12709102/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新沪教版(上海)七年级数学第二学期第十三章相交线 平行线课时练习试题(含答案解析)第3页](http://m.enxinlong.com/img-preview/2/3/12709102/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共33页。试卷主要包含了如图,直线AB,如图,在等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线课时练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72° B.72°,108°
C.48°,72°或72°,108° D.80°,120°
2、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,,则( )
A.20° B.40° C.70° D.110°
3、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )
A.① B.②和③ C.④ D.①和④
4、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )
A.3.5 B.4 C.5 D.5.5
5、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
6、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )
A.千米 B.千米 C.千米 D.千米
7、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为( )
A.30° B.60° C.80° D.不能确定
8、若∠1与∠2是内错角,则它们之间的关系是 ( )
A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
9、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
10、如图,∠1=∠2,∠3=25°,则∠4等于( )
A.165° B.155° C.145° D.135°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
2、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____
3、如图,直线AD⊥BD,垂足为点D,则点B到AC的距离是线段 _____的长度.
4、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.
5、判断正误:
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
(2)如果两个角相等,那么这两个角是对顶角( )
(3)有一条公共边的两个角是邻补角( )
(4)如果两个角是邻补角,那么它们一定互补( )
(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
三、解答题(10小题,每小题5分,共计50分)
1、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
(探究)已知:如图②,点E在AB上,且CE平分,.求证:.
(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
2、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.
3、如图,直线相交于点平分.
(1)若,求∠BOD的度数;
(2)若,求∠DOE的度数.
4、如图,已知,平分,平分,求证.
证明:∵平分(已知),
∴ ( ),
同理 ,
∴ ,
又∵(已知)
∴ ( ),
∴.
5、如图,直线AB,CD,EF相交于点O,
(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
(2)图中一共有几对对顶角?指出它们.
6、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
7、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
8、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
9、已知:如图,中,点、分别在、上,交于点, ,.
(1)求证:;
(2)若平分,,求的度数.
10、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
-参考答案-
一、单选题
1、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
2、B
【分析】
根据题意可得,,再由折叠的性质得到,即可得解;
【详解】
∵,
∴,,
∵,
∴,,
由折叠可知:,则;
故选B.
【点睛】
本题主要考查了折叠问题,平行线的性质,准确计算是解题的关键.
3、A
【分析】
利用平行线的性质逐一判断即可.
【详解】
①是平行线的性质,故符合题意;
②是平行线的判定,故不符合题意;
③是平行线的判定,故不符合题意;
④是平行线的判定,故不符合题意;
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.
4、D
【分析】
直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
【详解】
∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
∵AB=3,
∴AC=5,
∴3≤AP≤5,
故AP不可能是5.5,
故选:D.
【点睛】
本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
5、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
6、B
【分析】
根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
【详解】
解:根据两直线平行,内错角相等,可得∠ABG=48°,
∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
∴AB⊥BC,
∴A地到公路BC的距离是AB=8千米,
故选B.
【点睛】
此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
7、B
【分析】
由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.
【详解】
解:∵AD∥BC,∠FEC=30°,
∴∠AGE=∠GEC,
由翻折变换的性质可知∠GEF=∠FEC=30°,
∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.
故选:B.
【点睛】
本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.
8、D
【分析】
根据内错角角的定义和平行线的性质判断即可.
【详解】
解:∵只有两直线平行时,内错角才可能相等,
∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
三种情况都有可能,
故选D.
【点睛】
本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
9、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
10、B
【分析】
设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
【详解】
解:设∠4的补角为,如下图所示:
∠1=∠2,
,
,
.
故选:B.
【点睛】
本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
二、填空题
1、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
2、
【分析】
先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
【详解】
解:
∠EFG+∠EGD=150°,
∠EGD=
折叠
故答案为:.
【点睛】
本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
3、BD
【分析】
根据点到直线的距离判断即可;
【详解】
点的直线的距离为垂线段,因为AD⊥BD,所以点B到AC的距离是线段BD的长度;
故答案是:BD.
【点睛】
本题主要考查了点到直线的距离,准确分析判断是解题的关键.
4、44
【分析】
根据平行线的性质和翻折不变性解答.
【详解】
解:∵ADBC,
∴∠DFE=180°−∠CEF=180°−68°=112°,
∴∠D′FE=112°,∠GFE=180°−112°=68°,
∴∠GFD′=112°−68°=44°.
故答案为:44.
【点睛】
本题考查了平行线的性质和翻折不变性,注意观察图形.
5、(1)×;(2)×;(3)×;(4)√;(5)×
【分析】
根据对顶角与邻补角的定义与性质分析判断即可求解.
【详解】
(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
(2)如果两个角相等,那么这两个角不一定是对顶角,错误;
(3)有一条公共边的两个角不一定是邻补角,错误;
(4)如果两个角是邻补角,那么它们一定互补,正确;
(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
【点睛】
本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
三、解答题
1、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
2、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析
【分析】
根据题意画出图形,然后结合题意可进行求解.
【详解】
解:如图,
由图可知两条相交的直线,两两相配共组成6对角,
位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,
这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),
2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).
【点睛】
本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.
3、(1)20°;(2)60°
【分析】
(1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
(2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
【详解】
解:(1)∵∠AOE=40°,
∴∠AOF=180°-∠AOE=140°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=70°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠BOD=180°-∠AOB-∠AOC=20°;
(2)∵∠BOE=30°,OA⊥OB,
∴∠AOE=60°,
∴∠AOF=180°-∠AOE=120°,
∵OC平分∠AOF,
∴∠AOC=∠AOF=60°,
∴∠COE=∠AOE+∠AOC=60°+60°=120°,
∴∠DOE=180°-∠COE=60°.
【点睛】
本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
4、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
【分析】
由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
【详解】
证明:∵BE平分∠ABC(已知),
∴∠2=∠ABC(角平分线的定义),
同理∠1=∠BCD,
∴∠1+∠2=(∠ABC+∠BCD),
又∵AB∥CD(已知)
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
∴∠1+∠2=90°.
故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
5、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
【分析】
根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
【详解】
解:(1)由题意得:∠AOC的对顶角是∠BOD,
∠EOB的对顶角是∠AOF.
∠AOC的邻补角是∠AOD,∠BOC.
(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
【点睛】
本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
6、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
7、(1)40°;(2)见解析;(3)70°
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
8、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴SΔABC=12×AC×AB=12×BC×AD,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
9、(1)见解析;(2)72°
【分析】
(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
【详解】
解:(1)∵,∠2+∠DFE=180°,
∴∠3=∠DFE,
∴EF//AB,
∴∠ADE=∠1,
又∵,
∴∠ADE=∠B,
∴DE//BC,
(2)∵平分,
∴∠ADE=∠EDC,
∵DE//BC,
∴∠ADE=∠B,
∵
∴∠5+∠ADE+∠EDC==180°,
解得:,
∴∠ADC=2∠B=72°,
∵EF//AB,
∴∠2=∠ADC=180°-108°=72°,
【点睛】
本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
10、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共30页。试卷主要包含了下列语句中等内容,欢迎下载使用。
这是一份数学第十三章 相交线 平行线综合与测试课时作业,共28页。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共31页。
![英语朗读宝](http://m.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)