![2021-2022学年沪教版七年级数学第二学期第十四章三角形重点解析练习题(精选含解析)第1页](http://m.enxinlong.com/img-preview/2/3/12708534/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版七年级数学第二学期第十四章三角形重点解析练习题(精选含解析)第2页](http://m.enxinlong.com/img-preview/2/3/12708534/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版七年级数学第二学期第十四章三角形重点解析练习题(精选含解析)第3页](http://m.enxinlong.com/img-preview/2/3/12708534/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共30页。试卷主要包含了下列说法错误的是,如图,AB=AC,点D等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
A.40° B.50° C.70° D.100
2、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
3、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
4、下列说法错误的是( )
A.任意一个直角三角形都可以被分割成两个等腰三角形
B.任意一个等腰三角形都可以被分割成两个等腰三角形
C.任意一个直角三角形都可以被分割成两个直角三角形
D.任意一个等腰三角形都可以被分割成两个直角三角形
5、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
6、等腰三角形的一个顶角是80°,则它的底角是( ).
A.40° B.50° C.60° D.70°
7、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )
A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
8、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
A.10 B.8 C.7 D.4
9、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
10、满足下列条件的两个三角形不一定全等的是( )
A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.
2、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
3、如图,已知,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的边长为______.的边长为______.
4、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.
5、如图,,为上的定点,、分别为、上两个动点,当的值最小时,的度数为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.
2、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.
3、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
4、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
5、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
(1)在运动过程中△DEF是什么形状的三角形,并说明理由;
(2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
6、已知:
(1)O是∠BAC内部的一点.
①如图1,求证:∠BOC>∠A;
②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
(2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.
7、中,CD平分,点E是BC上一动点,连接AE交CD于点D.
(1)如图1,若,AE平分,则的度数为______;
(2)如图2,若,,,则的度数为______;
(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
8、如图,是的角平分线,于点.
(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
(2)在(1)中所作的图形中,求证:.
9、已知:如图,,,求证:
10、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
-参考答案-
一、单选题
1、C
【分析】
根据旋转的性质,可得 , ,从而得到,即可求解.
【详解】
解:∵绕点A按逆时针方向旋转40°后与重合,
∴ , ,
∴.
故选:C
【点睛】
本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
2、C
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
3、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
4、B
【分析】
根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【详解】
解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
故选:B.
【点睛】
本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
5、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
6、B
【分析】
依据三角形的内角和是180°以及等腰三角形的性质即可解答.
【详解】
解:(180°-80°)÷2
=100°÷2
=50°;
答:底角为50°.
故选:B.
【点睛】
本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
7、C
【分析】
根据全等三角形的判定定理进行判断即可.
【详解】
解:根据题意可知:AB=AC,,
若,则根据可以证明△ABE≌△ACD,故A不符合题意;
若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
故选:C.
【点睛】
本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
8、C
【分析】
根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
【详解】
解:条线段的长分别是4,4,m,若它们能构成三角形,则
,即
又为整数,则整数m的最大值是7
故选C
【点睛】
本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
9、C
【分析】
根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
【详解】
解:,
∴且,
∴,,
∴,
∵,
∴,
解得:,,
∴三角形为等腰直角三角形,
故选:C.
【点睛】
题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
10、A
【分析】
根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
【详解】
解:A、周长相等的两个三角形不一定全等,符合题意;
B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
故选:A.
【点睛】
此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
二、填空题
1、65°度
【分析】
由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
【详解】
解:∵点D为BC边的中点,
∴BD=CD,
∵将∠C沿DE翻折,使点C落在AB上的点F处,
∴DF=CD,∠EFD=∠C,
∴DF=BD,
∴∠BFD=∠B,
∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
∴∠A=∠AFE,
∵∠AEF=50°,
∴∠A=(180°-50°)=65°.
故答案为:65°.
【点睛】
本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
2、
【分析】
先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
【详解】
解:
∵∠BOC=128°,
∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
故答案为:76°.
【点睛】
本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
3、2a 2n﹣1a
【分析】
利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到AnBn=2n﹣1a.
【详解】
解:∵△A1B1A2为等边三角形,∠MON=30°,
∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,
同理:A2O=A2B2=2=21a,
A3B3=A3O=2A2O=4a=22a,
…….
以此类推可得△AnBnAn+1的边长为AnBn=2n﹣1a.
故答案为:2a;2n﹣1a.
【点睛】
本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.
4、80°
【分析】
先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.
【详解】
解:∵,
∴∠ABC+∠BCD=180°,
∵
∴,
∴AD∥BC,
∵,
∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,
∵∠ADC+∠BCD=180°,
∴∠BAD=∠BCD,
∵,
∴,
∵∠BAF=∠BAD+∠DAF,
∴∠BAF+∠AEB=180°,
∴∠AEB=∠F,
∵AD∥BC,
∴∠CBE=∠AEB,
∵BE平分,
∴∠ABC=2∠CBE=2∠F,
∴∠ADC=2∠F,
∵,
在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,
∵,
∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,
∴∠F+180°-5∠F=100°,
解得∠F=20°,
∴,
故答案为80°.
【点睛】
本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.
5、6°
【分析】
作点关于直线的对称点,连接,交于点,过点作,交于点,根据,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,进而根据直角三角形的两锐角互余,以及角度的和差关系求得即可
【详解】
解:如图,作点关于直线的对称点,连接,交于点,过点作,交于点,
,
,且当时最小,
所以当的值最小时,当点与点重合,点与点重合时,此时等于,
又
,
根据对称性可得
当的值最小时,的度数为
故答案为:
【点睛】
本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.
三、解答题
1、
【分析】
由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
【详解】
解:∵是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴(SAS),
∴,
∵,
∴.
【点睛】
本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
2、答案见解析
【分析】
AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
【详解】
解:如图,
……
[答案不唯一]
【点睛】
本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
3、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
4、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
5、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
【分析】
(1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
(2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
【详解】
(1)解:△DEF是等边三角形,
证明:由点D、E、F的运动情况可知:,
△ABC是等边三角形,
,,
,
,
在与中,
,
,
同理可证,进而有,
,
故△DEF是等边三角形.
(2)解:由(1)可知△DEF是等边三角形,且,
,,,
,
,
在中,,
,
,
,
等边△ABC的周长为.
【点睛】
本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
6、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
【分析】
(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
②延长AO至点E,根据三角形外角性质解答即可;
(2)根据三角形外角性质和三角形内角和定理解答即可.
【详解】
证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
∴∠BOC>∠A;
②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
∵OA=OB=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;
(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
证明:如图所示,设∠B=x,
∵OA=OB=OC,
∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
即∠BOC=2∠BAC.
【点睛】
此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
7、(1)40°;(2)10°;(3)AB∥CF,理由见解析
【分析】
(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
【详解】
解:(1)∵∠ADC=110°,
∴∠DAC+∠DCA=180°-110°=70°,
∵AE平分∠BAC,CD平分∠ACB,
∴∠BAC=2∠DAC,∠ACB=2∠DCA,
∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
故答案为:40°;
(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
∴∠DEC=100°-53°=47°,
∴∠B+∠BAE=∠DEC=47°,
∵∠B-∠BAE=27°,
∴∠BAE=10°,
故答案为:10°;
(3)AB∥CF,理由为:
如图,延长AC到G,
∵AC=CF,
∴∠F=∠FAC,
∴∠FCG=∠F+∠FAC=2∠F,
∵CF⊥CD,
∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
∵CD平分∠ACB,
∴∠BCD=∠ACD,
∴∠BCF=∠FCG=2∠F,
∵∠B=2∠F,
∴∠B=∠BCF,
∴AB∥CF.
【点睛】
本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
8、(1)见解析;(2)见解析.
【分析】
(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
【详解】
解:(1)如图,点F、G即为所求作的点;
(2)是的角平分线,,,
【点睛】
本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
9、证明见解析
【分析】
由,,结合公共边 从而可得结论.
【详解】
证明:在与中,
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
10、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共35页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共34页。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)