初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共20页。
京改版八年级数学下册第十七章方差与频数分布月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.众数2、下列说法中正确的是( ).A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小3、数字“20211202”中,数字“2”出现的频数是( )A.1 B.2 C.3 D.44、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是65、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成( )组.A.10 B.9 C.8 D.76、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )A.众数是11 B.平均数是12 C.方差是 D.中位数是137、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是( )A.平均数 B.中位数 C.众数 D.方差8、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分9、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )序号12345678910质量(千克)44515747485049534952A.500千克,7500元 B.490千克,7350元C.5000千克,75000元 D.4850千克,72750元10、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A.0.25 B.0.3 C.2 D.30第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据:2,3,4,5,6,则这组数据的标准差是 __.2、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是,则在本次测试中,_______运动员的成绩更稳定(填“甲”或“乙”).3、一组数据5,8,x,10,4的平均数为2x,则x=_____,这组数据的方差为_____.4、已知:①1,2,3,4,5的平均数是3,方差是2;②2,3,4,5,6的平均数是4,方差是2;③1,3,5,7,9的平均数是5,方差是8;④2,4,6,8,10的平均数是6,方差是8;请按要求填空:(1),,,,的平均数是 ,方差是 ;(2),,,,的平均数是 ,方差是 ;(3),,,,的平均数是 ,方差是 .5、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.三、解答题(5小题,每小题10分,共计50分)1、某学校为了调查学生利用“天天跳绳”APP锻炼身体的使用频率,随机抽取了部分学生,利用调查问卷进行抽样调查:用“A”表示“一周5次”,“B”表示“一周4次”,“C”表示“一周3次”,“D”表示“一周2次”(必须选且只选一项),如图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)本次调查中,共调查了多少人?(2)将图(2)补充完整;(3)如果该学校有学生1000人,请你估计该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有多少人?2、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查 名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?3、甲、乙两支篮球队进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表: 平均数中位数方差甲 91 乙90 70.8(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩?4、实行垃圾分类是保护生态环境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从A、B两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5B小区20位居民测试成绩的条形统计图如下:A、B小区抽取的居民测试成绩统计表如下:小区AB平均数7.3a中位数7.5b众数c9方差2.413.51根据以上信息,回答下列问题:(1)填空:a= ,b= ,c= ;(2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议.5、在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”,“平均差”也能描述一组数据的离散程度,“平均差”越大,说明数据的离散程度越大.(1)分别计算下列两组数据的“平均差”,并根据计算结果比较这两组数据的稳定性; 甲:9,11,8,12,7,13,6,14,10,10.乙:8,9,10,11,7,12,9,11,10,13.(2)分别计算甲、乙两组数据的方差,并根据计算结果比较这两组数据的稳定性. -参考答案-一、单选题1、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.2、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.4、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.5、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,
95÷10=9.5,
所以应该分成10组.
故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.6、D【分析】根据中位数、平均数、众数和方差的定义计算即可得出答案.【详解】解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意; C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D.【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.7、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.8、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.9、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.10、B【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
选择“5G时代”的人数为:30人,
∴选择“5G时代”的频率是:=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.二、填空题1、【分析】计算出平均数和方差后,再计算方差的算术平方根,即为标准差.【详解】解:,,这组数据的标准差是.故答案为:.【点睛】本题考查的是标准差的计算,掌握方差的计算公式和方差与标准差的关系是解题的关键,注意标准差即方差的算术平方根.2、甲【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵,
∴,
∴甲运动员比乙运动员的成绩稳定;
故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.3、3 6.8 【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:∵数据5,8,x,10,4的平均数是2x,∴5+8+x+10+4=5×2x,解得x=3,=2×3=6,s2= [(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=×(1+4+9+16+4)=6.8.故答案为3,6.8.【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键4、(1),2 ;(2),8;(3),【分析】(1)数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,只需将数据的平均数加上(n−1)即可,而数据波动幅度不变;(2)数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,只需将原数据的平均数加上(n−2)即可,而数据波动幅度不变;;(3)由数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,将原数据的平均数乘以n,方差乘以n2即可得出答案.【详解】解:(1)∵数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,∴数据n,n+1,n+2,n+3,n+4的平均数3+n−1=n+2,方差依然是2,故答案为:n+2,2;(2)∵数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,∴n,n+2,n+4,n+6,n+8的平均数是6+n−2=n+4,方差依然是8,故答案为:n+4,8;(3)数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,∴数据n,2n,3n,4n,5n的平均数为3n,方差为2n2,故答案为:3n,2n2.【点睛】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的性质.5、0.75【分析】根据频率=频数÷总数进行求解即可.【详解】解:∵小亮在10分钟之内罚球20次,共罚进15次,∴小亮点球罚进的频率是,故答案为:0.75.【点睛】本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.三、解答题1、(1)人;(2)补全图形见解析;(3)人【分析】(1)由C组有100人,占比列式计算后可得答案;(2)先求解B组人数,再补全图形即可;(3)由总人数1000乘以D组“一周2次”的占比即可得到答案.【详解】解:(1)由C组有100人,占比 可得:本次调查中,共调查人.(2)B组人数有人,补全图形如下:(3)该学校有学生1000人,该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有:人.【点睛】本题考查的是从扇形图与条形图中获取信息,补全条形统计图,利用样本估计总体,理解扇形图与条形图中关联信息是解本题的关键.2、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好运动的人数为,所占百分比为共调查人数为:,故答案为:;爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为,估计爱好运用的学生人数为:,故答案为:;【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.3、(1)90,28.4,87;(2)选派甲球队参赛更能取得好成绩【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可.【详解】解:(1)甲的平均数是:×(82+86+95+91+96)=90;甲队的方差是:×[(82﹣90)2+(86﹣90)2+(95﹣90)2+(91﹣90)2+(96﹣90)2]=28.4;把乙队的数从小到大排列,中位数是87; 平均数中位数方差甲909128.4乙908770.8故答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩.【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据平均数、中位数、方差的意义求解即可.【详解】解:(1)A小区20位居民的测试成绩中8分出现次数最多,有5次,∴A小区的众数c=8,有统计图数据可知B小区20位居民的测试成绩的平均数a==7.3,∵B小区一共有20位居民参加测试,∴B小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,∴B小区20位居民的测试成绩的中位数b==7.5,故答案为:7.3、7.5、8;(2)比较A、B小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A小区测试成绩的方差小于B小区,∴A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【点睛】本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键.5、(1)T甲=2,T乙=1.4,乙组数据更稳定;(2)=6,=3,乙组数据更稳定【分析】(1)先求出甲乙两组的平均数,再利用平均差公式求出甲乙两组的平均差,再比较大小即可;(2)根据方差公式求甲乙两组的方差,再比较大小即可.【详解】解:(1)∵,∴…,∵,∴…,∴,∴乙组数据更稳定;(2)∵,,,∴乙组数据更稳定.【点睛】本题考查平均数,新定义平均差,方差,掌握平均数,新定义平均差,方差是解题关键.
相关试卷
这是一份数学八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题,共21页。试卷主要包含了2020年某果园随机从甲,已知一组数据的方差s2=[等内容,欢迎下载使用。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共23页。试卷主要包含了一组数据1等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共20页。试卷主要包含了为考察甲等内容,欢迎下载使用。