搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试题(名师精选)

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试题(名师精选)第1页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试题(名师精选)第2页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试题(名师精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十三章 相交线 平行线综合与测试一课一练

    展开

    这是一份2021学年第十三章 相交线 平行线综合与测试一课一练,共29页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,在等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )A.40° B.50° C.140° D.150°2、如图,ABCDAECF,∠C=131°,则∠A=(   A.39° B.41° C.49° D.51°3、如图,若ABCDCDEF,那么BCE=(    A.180°-2+1 B.180°-1-2 C.2=21 D.1+24、如图,点A是直线l外一点,过点AABl于点B.在直线l上取一点C,连结AC,使ACAB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是(  )A.3.5 B.4 C.5 D.5.55、如图所示,下列条件中,不能推出ABCE成立的条件是(    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6、下列各图中,∠1与∠2是对顶角的是(      A.  B. C.  D.7、点P是直线外一点,为直线上三点,,则点P到直线的距离是(      A.2cm B.小于2cm C.不大于2cm D.4cm8、如图,直线ABCD,直线ABCD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为(       A.30° B.40° C.50° D.60°9、如图,在两地之间要修条笔直的公路,从地测得公路走向是北偏东两地同时开工,若干天后公路准确接通,若公路千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是(    A.千米 B.千米 C.千米 D.千米10、下列说法中,正确的是(  )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCD中,ABCDADBC,点FBC的延长线上,CE平分∠DCFAD的延长线于点E,已知∠E=35°,则∠A=___.2、如图所示,点ABCD在同一条直线上.在线段PAPBPCPD中,最短的线段是________,理由是________.3、如图,AOBOO为垂足,直线CD过点O,且∠BOD=3∠AOC,则∠BOD=________.4、如图,点为直线上一点,(1)__________________°,__________________°(2)的余角是__________________,的补角是___________________.5、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.三、解答题(10小题,每小题5分,共计50分)1、如图,ABDG,∠1+∠2=180°.(1)试说明:ADEF(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.2、如图1,点AOB依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.3、作图并计算:如图,点O在直线上.(1)画出的平分线(不必写作法);(2)在(1)的前提下,若,求的度数.4、如图,107国道上有一个出口M,想在附近公路旁建一个加油站,欲使通道最短,应沿怎样的线路施工?5、如图,在边长为1的正方形网格中,点ABCD都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQAB,画出线段CQ(3)如图c,画线段CMAB.要求点M在格点上.6、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  7、如图,直线ABCD相交于点OOC平分∠BOEOFCD,垂足为点O(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.8、完成下面的证明如图,点BAG上,AGCDCF平分∠BCD,∠ABE=∠FCBBEAFE求证:∠F=90°.证明:∵AGCD(已知)∴∠ABC=∠BCD(____)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)BECF(____)∴____=∠F(____)BEAF(已知)∴____=90°(____)∴∠F=90°.9、如图,直线交于点于点,且的度数是的4倍.(1)求的度数;(2)求的度数.10、已知三点在同一条直线上,平分平分(1)若,如图1,则      (2)若,如图2,求的度数;(3)若如图3,求的度数. -参考答案-一、单选题1、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,ABCD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),AECF∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.3、A【分析】根据两直线平行,内错角相等,同旁内角互补,这两条性质解答.【详解】ABCDCDEF∴∠1=∠BCD,∠ECD+∠2=180°,BCE=∠BCD+∠ECD=180°-2+1,故选A【点睛】本题考查了平行线的性质,正确选择合适的平行线性质是解题的关键.4、D【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点AABl于点B,在直线l上取一点C,连接AC,使ACABP在线段BC上连接APAB=3,AC=5,∴3≤AP≤5,AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.5、B【分析】根据平行线的判定定理分析即可.【详解】A、∠A和∠ACEABCEAC所截形成的内错角,则∠A=∠ACE时,可以推出ABCE,不符合题意;B、∠B和∠ACE不属于ABCE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出ABCE,符合题意;C、∠B和∠ECDABCEBD所截形成的同位角,则∠B=∠ECD时,可以推出ABCE,不符合题意;D、∠B和∠BCE ABCEBD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出ABCE,不符合题意;故选:B.【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.6、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.7、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且∴点到直线的距离不大于故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.8、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,ABCD∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.9、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,ABBCA地到公路BC的距离是AB=8千米,故选B【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.10、C【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.二、填空题1、110︒度【分析】根据平行线的性质和角平分线的性质可得结论.【详解】解:∵AD//BC CE平分∠DCF AB//CD AD//BC 故答案为:110︒【点睛】本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.2、PC    垂线段最短    【分析】根据垂线段最短求解即可.【详解】解:∵PAPBPD都不垂直于AD∴由垂线段最短可得,最短的线段是PC理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.3、67.5°【分析】根据垂直的定义得到∠AOB=90°,可利用互余得∠AOC+∠BOD=90°,把∠AOC=BOD代入可计算出∠BOD【详解】解:∵AOBO∴∠AOB=90°,∵∠COD=180°,∴∠AOC+∠BOD=90°,∵∠BOD=3∠AOCBOD+∠BOD=90°,∴∠BOD=67.5°.故答案为67.5°.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质:过一点有且只有一条直线与已知直线垂直.4、35    55            【分析】(1)由可得,所以,所以,已知的度数,即可得出的度数;(2)由(1)可得的余角是,要求的补角,即要求的补角,的补角是【详解】解:(1)(2)由(1)可得的余角是的补角是的补角是故答案为:(1)35,55;(2)【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.5、50°【分析】根据平行线的性质计算即可;【详解】解:如图所示,由折叠可得,∠3=∠1=65°,∴∠CEG=130°,ABCD∴∠2=180°﹣∠CEG=180°﹣130°=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.三、解答题1、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由ABDG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.AD∥EF . (2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,DG是∠ADC的平分线,∴∠CDG=∠1=38°,AB∥DG∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.2、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB=180°−∠AOM−∠BON计算即可.(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.【详解】解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.(2)当重合时, 解得: 当0≤t≤18时: 4t+6t=120解得: 当18≤t≤30时:则 4t+6t=180+60,解得 t=24,答:当∠AOB达到60°时,t的值为6或24秒.(3) 当0≤t≤18时,由 180−4t−6t=90,解得t=9,当18≤t≤30时,同理可得: 4t+6t=180+90 解得t=27. 所以大于的答案不予讨论,答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.3、(1)见解析;(2)150°【分析】(1)根据画角平分线的方法,画出角平分线即可;(2)先求出的度数,然后由角平分线的定义,即可求出答案.【详解】解:(1)如图,OD即为平分线(2)解:∵【点睛】本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.4、作图见解析【分析】根据垂线段最短作图即可;【详解】解:如图,过点MMN,垂足为N,欲使通道最短,应沿线路MN施工.【点睛】本题主要考查了垂线段最短的应用,尺规作图,准确分析作图是解题的关键.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQAB,画出线段CQ(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CMAB【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.6、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.7、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OCCD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OFOC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF【详解】解:(1)∵OCCD∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD∴∠AOF+∠BOC=90°,OC平分∠BOE∴∠COE=∠BOC∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COEOFOC∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.8、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCDCF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),BEAF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.9、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OECD∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.10、(1)90;(2)90°;(3)90°【分析】(1)由三点在同一条直线上,得出,则,由角平分线定义得出,即可得出结果;(2)由,则,同(1)即可得出结果;(3)易证,同(1)得,即可得出结果.【详解】解:(1)三点在同一条直线上,平分平分故答案为:90;(2)同(1)得:(3)同(1)得:【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键. 

    相关试卷

    2021学年第十三章 相交线 平行线综合与测试复习练习题:

    这是一份2021学年第十三章 相交线 平行线综合与测试复习练习题,共30页。试卷主要包含了下列语句中,下列关于画图的语句正确的是.,如图,直线AB,如图,下列四个结论等内容,欢迎下载使用。

    初中第十三章 相交线 平行线综合与测试测试题:

    这是一份初中第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了直线,下列说法等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步训练题,共30页。试卷主要包含了如图,直线b,下列说法中正确的个数是,如图,在,如图,直线a等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map