搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选)

    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选)第1页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选)第2页
    2021-2022学年度强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向练习试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共29页。试卷主要包含了下列说法,如图木条a等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于(    A.40° B.36° C.44° D.100°2、如图,直线被所截,下列说法,正确的有(    是同旁内角;是内错角;是同位角;是内错角.A.①③④ B.③④ C.①②④ D.①②③④3、如图,矩形纸片ABCD沿EF折叠后,∠FEC=30°,则∠AGE的度数为(    A.30° B.60° C.80° D.不能确定4、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有(    A.0个 B.1个 C.2个 D.3个5、如图,木工用图中的角尺画平行线的依据是(    A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行6、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )A.40° B.50° C.140° D.150°7、如图木条abc用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线ACDFMN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是(        A.木条bc固定不动,木条a绕点B顺时针旋转20°B.木条bc固定不动,木条a绕点B逆时针旋转160°C.木条ac固定不动,木条b绕点E逆时针旋转20°D.木条ac固定不动,木条b绕点E顺时针旋转110°8、如图,在直角三角形ABC中,∠BAC=90°,ADBC于点D,则下列说法错误的是(  )A.线段AC的长度表示点CAB的距离B.线段AD的长度表示点ABC的距离C.线段CD的长度表示点CAD的距离D.线段BD的长度表示点ABD的距离9、如图,直线ab被直线c所截,下列条件不能判定直线ab平行的是(  )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°10、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有(    A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD是∠EAC的平分线,ADBC,∠B=40°,则∠DAC的度数为____.2、如图,AOBOO为垂足,直线CD过点O,且∠BOD=3∠AOC,则∠BOD=________.3、如图,直线AB、CD相交于点OOEAB于点O,若∠COE=55°,则∠BOD为______. 4、如图,已知 ABCDEFBCADAC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.5、如图,直线ab被直线c所截,ab,∠1=60°,则∠2的度数为________.三、解答题(10小题,每小题5分,共计50分)1、完成下列填空:已知:如图,CA平分求证:证明:∵(已知)________( )(已知)________(  又∵CA平分(已知)________(  (已知)_____________=30°(  2、如图,已知BCDE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.3、如图,直线ABCDEF相交于点OOGCD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.4、如图所示,点分别在上,均与相交,,求证:5、(感知)已知:如图①,点EAB上,且CE平分.求证:将下列证明过程补充完整:证明:∵CE平分(已知),__________(角平分线的定义),(已知),___________(等量代换),(______________).(探究)已知:如图②,点EAB上,且CE平分.求证:(应用)如图③,BE平分,点ABD上一点,过点ABE于点E,直接写出的度数.6、如图,直线ABCD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.7、如图,已知平分平分,求证证明:∵平分(已知),                             ),同理                          又∵(已知)                             ),8、如图直线,直线分别和交于点交直线b于点C(1)若,直接写出     (2)若,则点B到直线的距离是      (3)在图中直接画出并求出点A到直线的距离.9、如图,方格纸中每个小正方形的边长都是1.(1)过点P分别画PMACPNABPMAB相交于点MPNAC相交于点N(2)求四边形PMAN的面积.10、如图,已知AEBFACAEBDBFACBD平行吗?补全下面的解答过程(理由或数学式).解:∵AEBF∴∠EAB          .(          ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD          ∴∠EAB          =∠FBG          即∠1=∠2.                              ). -参考答案-一、单选题1、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,PQMN∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.2、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①是同旁内角,说法正确;是内错角,说法正确;是同位角,说法正确;是内错角,说法正确,故选:D【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3、B【分析】由翻折变换的性质求出∠GEF的度数,再利用平行线的性质可得出结论.【详解】解:∵ADBC,∠FEC=30°,∴∠AGE=∠GEC由翻折变换的性质可知∠GEF=∠FEC=30°,∴∠AGE=∠GEC=∠GEF+∠FEC=30°+30°=60°.故选:B.【点睛】本题考查了平行线的性质以及折叠的性质,根据平行线的性质找到相等(或互补)的角是关键.4、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线ab被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.5、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.6、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.7、D【分析】根据同位角相等,两直线平行,逐项判断即可.【详解】解:A、木条bc固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;B、木条bc固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;C、木条ac固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;D、木条ac固定不动,木条b绕点E顺时针旋转110°,木条bc重合,则 ,故本选项错误,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.8、D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点CAB的距离,说法正确,不符合题意;B. 线段AD的长度表示点ABC的距离,说法正确,不符合题意;C. 线段CD的长度表示点CAD的距离,说法正确,不符合题意;D. 线段BD的长度表示点BAD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.9、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.10、A【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.二、填空题1、40°【分析】根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.【详解】ADBC,∠B=40°,∴∠EAD=∠B=40°,AD是∠EAC的平分线,∴∠DAC=∠EAD=40°,故答案为:40°【点睛】本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2、67.5°【分析】根据垂直的定义得到∠AOB=90°,可利用互余得∠AOC+∠BOD=90°,把∠AOC=BOD代入可计算出∠BOD【详解】解:∵AOBO∴∠AOB=90°,∵∠COD=180°,∴∠AOC+∠BOD=90°,∵∠BOD=3∠AOCBOD+∠BOD=90°,∴∠BOD=67.5°.故答案为67.5°.【点睛】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.垂线的性质:过一点有且只有一条直线与已知直线垂直.3、35°【分析】根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.【详解】解:∵OEAB∴∠AOE=90°,∴∠AOC=90°- ∴∠BOD=∠AOC= 故答案为:35°.【点睛】本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.4、5【分析】ABCDEF,可得∠AGE=∠GAB=∠DCA;由BCAD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.【详解】解:∵ABCDEF∴∠AGE=∠GAB=∠DCABCAD∴∠GAE=∠GCF又∵AC平分∠BAD∴∠GAB=∠GAE∵∠AGE=∠CGF∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF∴图中与∠AGE相等的角有5个故答案为:5.【点睛】本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.5、120°【分析】要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.【详解】解:∵ab,∠1=60°,∴∠3=120°,∴∠2=∠3=120°.故答案为:120°【点睛】考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.三、解答题1、180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线的定义;;两直线平行,内错角相等【分析】ABCD平行,利用两直线平行同旁内角互补求出∠BCD度数,由CA为角平分线,利用角平分线定义求出∠2的度数,再利用两直线平行内错角相等即可确定出∠1的度数.【详解】证明:∵ABCD,(已知)∴∠B+∠BCD=180°,(两直线平行同旁内角互补)∵∠B=120°(已知),∴∠BCD=60°.CA平分∠BCD(已知),∴∠2=30°,(角平分线定义).ABCD(已知),∴∠1=∠2=30°.(两直线平行内错角相等).故答案为:180°;两直线平行,同旁内角互补;60°;等式的性质;30°;角平分线定义;∠2;两直线平行,内错角相等.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.2、ABDEBCEF,则∠B=∠E,此命题为真命题,见解析.【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若ABDEBCEF,则∠B=∠E,此命题为真命题.(2)若ABDE,∠B=∠E,则BCEF,此命题为真命题.(3)若∠B=∠EBCEF,则ABDE,此命题为真命题.以第一个命题为例证明如下:ABDE∴∠B=∠DOC.BCEF∴∠DOC=∠E∴∠B=∠E【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.3、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG(2)求出∠EOG=∠BOG即可.【详解】解:(1)∵OGCD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG即:OG平分∠BOE【点睛】本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.4、证明见解析【分析】,证明,再证,最后根据对顶角相等,可得答案.【详解】证明:∵又∵【点睛】本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.5、【感知】ECDECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知CE平分(已知),ECD(角平分线的定义),(已知),ECD(等量代换),(内错角相等,两直线平行).故答案为:ECDECD;内错角相等,两直线平行探究CE平分.应用BE平分∠DBCAEBC∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE∴∠ABC=80゜【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.6、【分析】根据可得OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.【详解】解:∵OF是∠AOE的角平分线,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.7、ABC;角平分线的定义;BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=ABC(角平分线的定义),同理∠1=BCD∴∠1+∠2=(∠ABC+∠BCD),又∵ABCD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:ABC;角平分线的定义;BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.8、(1);(2)4;(3)作图见详解;点A到直线BC的距离为【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵故答案为:(2)∵∴点B到直线AC的距离为线段故答案为:4;(3)如图所示:过点A,点A到直线BC的距离为线段AD的长度,为直角三角形, 解得:∴点A到直线BC的距离为【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.9、(1)见解析;(2)18.【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:点M,点N即为所求;(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.【点睛】本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.10、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBDACBD;同位角相等,两直线平行【分析】由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.【详解】AEBF∴∠EAB=∠FBG(两直线平行,同位角相等).ACAEBDBF∴∠EAC=90°,∠FBD=90°.∴∠EAC=∠FBD(等量代换),∴∠EAB﹣∠EAC=∠FBG﹣∠FBD即∠1=∠2.ACBD(同位角相等,两直线平行).故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBDACBD,同位角相等,两直线平行.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共32页。试卷主要包含了如图,直线AB,下列说法中,正确的是等内容,欢迎下载使用。

    数学沪教版 (五四制)第十三章 相交线 平行线综合与测试同步测试题:

    这是一份数学沪教版 (五四制)第十三章 相交线 平行线综合与测试同步测试题,共24页。试卷主要包含了如图,直线b,如图,能与构成同位角的有,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共26页。试卷主要包含了下列语句中,下列说法中正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map