开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第1页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第2页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    八年级下册第十五章 四边形综合与测试课堂检测

    展开

    这是一份八年级下册第十五章 四边形综合与测试课堂检测,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是(    ).A. B.C. D.2、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线ly=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )
    A.7 B.6 C.4 D.83、如图,已知平分线上的一点,的中点,,如果上一个动点,则的最小值为(      
    A. B. C. D.4、下列图形中,是中心对称图形的是(  )A. B.C. D.5、下列各APP标识的图案是中心对称图形的是(  )A. B. C. D.6、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B. C. D.7、将一张长方形纸片ABCD按如图所示的方式折叠,AEAF为折痕,点BD折叠后的对应点分别为,若=10°,则∠EAF的度数为(  )A.40° B.45° C.50° D.55°8、如图,在△ABC中,点EF分别是ABAC的中点.已知∠B=55°,则∠AEF的度数是(  )A.75° B.60° C.55° D.40°9、下列图形中,既是中心对称图形,又是轴对称图形的个数是(    A.1 B.2 C.3 D.410、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EFADF,交BCEOBEB,点GBD上一点,满足EGFG,若∠DBC=30°,则∠OGE的度数为(  )
    A.30° B.36° C.37.5° D.45°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,对角线ACBD相交于点OAB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②EDEC;③∠ADF=∠ECF;④点E运动的路程是2,其中正确结论的序号为 _____.
     2、正五边形的一个内角与一个外角的比______.3、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.4、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.5、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ADBC上的高线,CEAB边上的中线,G(1)若,求线段AC的长;(2)求证:2、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).3、如图1,矩形ABCD中,AB=9,AD=12,点GCD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;(2)在点PBC运动的过程中,是否存在使APGP的时刻?若存在,求出x的值,若不存在,请说明理由;(3)如图2,MN分别是APPG的中点,在点PBC运动的过程中,线段MN所扫过的图形是什么形状     ,并直接写出它的面积     4、如图,在△ABC中,点DE分别是ACAB的中点,点FCB延长线上的一点,且CF=3BF,连接DBEF(1)求证:四边形DEFB是平行四边形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.5、阅读探究小明遇到这样一个问题:在中,已知的长分别为,求的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即的3个顶点都在小正方形的顶点处),从而借助网格就能计算出的面积.他把这种解决问题的方法称为构图法,(1)图1中的面积为________.实践应用参考小明解决问题的方法,回答下列问题:(2)图2是一个的正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为的格点的面积为________(写出计算过程).拓展延伸(3)如图3,已知,以为边向外作正方形和正方形,连接.若,则六边形的面积为________(在图4中构图并填空). -参考答案-一、单选题1、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、A【分析】如图所示,连接ACOB交于点D,先求出C和A的坐标,然后根据矩形的性质得到DAC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.【详解】解:如图所示,连接ACOB交于点DC是直线y轴的交点,∴点C的坐标为(0,2),OA=4,A点坐标为(4,0),∵四边形OABC是矩形,DAC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为故选A.
    【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.3、C【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OPDP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】解:∵点P是∠AOB平分线上的一点,PDOAMOP的中点,∵点COB上一个动点∴当时,PC的值最小,OP平分∠AOBPDOA最小值故选C.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.5、C【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、既是轴对称图形,又是中心对称图形,符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠DAF,∠BAE=∠BAE,用αβ表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β根据折叠性质可知:DAF=∠DAF,∠BAE=∠BAE∵∠BAD′=10°,∴∠DAF=10°+βBAE=10°+α∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,α+β=30°,∴∠EAF=∠BAD′+∠DAE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8、C【分析】EF是△ABC的中位线,得EFBC,再由平行线的性质即可求解.【详解】解:∵点EF分别是ABAC的中点,EF是△ABC的中位线,EFBC∴∠AEF=∠B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键.9、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD OBEB ∵点O为对角线BD的中点, EGFG,即 故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.二、填空题1、①②③④【分析】①根据∠DAC=60°,ODOA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF=60°,再利用角的等量代换,即可得出结论①正确;②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④延长OE,使OD,连接,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,从而得出结论④正确;【详解】解:①设的交点为如图所示:∵∠DAC=60°,ODOA∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ADO =60°,∵△DFE为等边三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,故结论①正确;②如图,连接OE在△DAF和△DOE中,∴△DAF≌△DOESAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE在△ODE和△OCE中,∴△ODE≌△OCESAS),EDEC,∠OCE=∠ODE故结论②正确;③∵∠ODE=∠ADF∴∠ADF=∠OCE,即∠ADF=∠ECF故结论③正确;④如图,延长OE,使OD,连接
     ∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段运动到,则∴在中,解得:ODAD∴点E运动的路程是故结论④正确;故答案为:①②③④.【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.2、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案.【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为∴正五边形的一个内角与一个外角的比为故答案为:【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.3、720°720度【分析】根据多边形内角和可直接进行求解.【详解】解:由题意得:该正六边形的内角和为故答案为720°.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.4、【分析】利用三角形的内角和定理以及折叠的性质,求出,利用四边形内角和为,即可求出∠2.【详解】解:在中,中,由折叠性质可知:四边形的内角和为,且∠1=85°,故答案为:【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.5、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.【详解】解:由题意得:n-2)×180°=360°×2,解得:n=6;故答案为6.【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.三、解答题1、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1)(2)连接DE【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.2、见解析【分析】根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:如图所示,一共有三种情况:【点睛】此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.【分析】(1)PB=xPC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到yx的函数关系式,然后将y=34代入函数关系式可求得x的值;(2)先依据勾股定理求得PAPGAG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;(3)确定出点P分别与点B和点C重合时,点MN的位置,然后依据三角形的中位线定理可证明M1M2N1N2N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.【详解】解:(1)∵四边形ABCD为矩形,DC=AB=9,AD=BC=12.DG=5,GC=4.PB=xPC=12-xy=9×12-×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.y=34时,-2.5x+54=34,解得x=8;(2)存在.PB=xPC=12-xAD=12,DG=5,PA2=AB2+BP2=81+x2PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.∵当AG2=AP2+PG2时,APPG∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,解得:x=6;(3)如图所示:∵当点P与点B重合时,点M位于M1处,点N位于点N1处,M1AB的中点,点N1GB的中点.∵当点P与点C重合时,点M位于M2处,点N位于点N2处,M2AC的中点,点N2CG的中点.M1M2BCM1M2=BCN1N2BCN1N2=BCM1M2N1N2N1N2=M1M2∴四边形M1M2N2N1为平行四边形.MN扫过的区域为平行四边形.S=BC•(AB-CG)=6×2.5=15,故答案为:平行四边形;15.【点睛】本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.4、(1)见解析;(2)平行四边形DEFB的周长=【分析】(1)证DE是△ABC的中位线,得DEBCBC=2DE,再证DEBF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC=2DE=8(cm),BFDE=4cm,四边形DEFB是平行四边形,得BDEF,再由勾股定理求出BD=10(cm),即可求解.【详解】(1)证明:∵点DE分别是ACAB的中点,DE是△ABC的中位线,DE//BCBC=2DECF=3BFBC=2BFDEBF∴四边形DEFB是平行四边形;(2)解:由(1)得:BC=2DE=8(cm),BFDE=4cm,四边形DEFB是平行四边形,BDEFDAC的中点,AC=12cm,CDAC=6(cm),∵∠ACB=90°,BD=10(cm),∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.5、(1);(2)①作图见详解;②8;(3)在网格中作图见详解;31.【分析】(1)根据网格可直接用割补法求解三角形的面积;(2)①利用勾股定理画出三边长分别为,然后依次连接即可;②根据①中图形,可直接利用割补法进行求解三角形的面积;(3)根据题意在网格中画出图形,然后在网格中作出,进而可得,得出,进而利用割补法在网格中求解六边形的面积即可.【详解】解:(1)△ABC的面积为:故答案为:(2)①作图如下(答案不唯一): 的面积为:故答案为:8;(3)在网格中作出中,六边形AQRDEF的面积=正方形PQAF的面积+正方形PRDE的面积+的面积故答案为:31.【点睛】本题主要考查勾股定理、正方形的性质、割补法求解面积及二次根式的运算,熟练掌握勾股定理、正方形的性质、割补法求解面积及二次根式的运算是解题的关键. 

    相关试卷

    数学八年级下册第十五章 四边形综合与测试达标测试:

    这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试当堂检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试当堂检测题,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    北京课改版八年级下册第十五章 四边形综合与测试练习:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共26页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map