年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(名师精选)

    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(名师精选)第1页
    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(名师精选)第2页
    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布重点解析试题(名师精选)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂检测题,共23页。试卷主要包含了某校八年级人数相等的甲,一组数据1等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在小组,而不在小组),根据图形提供的信息,下列说法中错误的是(   
    A.该学校教职工总人数是50人B.年龄在小组的教职工人数占总人数的20%C.某教师40岁,则全校恰有10名教职工比他年轻D.教职工年龄分布最集中的在这一组2、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是(  )A.20m3 B.52m3 C.60m3 D.100m33、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是(  )居民(户)5334月用电量(度/户)30425051A.平均数是43.25 B.众数是30C.方差是82.4 D.中位数是424、某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,则成绩波动最小的班级(    A.甲 B.乙 C.丙 D.无法确定5、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是(    A.甲团 B.乙团 C.丙团 D.丁团6、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是(    A.平均数 B.中位数 C.众数 D.方差7、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是(     )A.调查方式是普查 B.该校只是个家长持反对态度C.样本是个家长 D.该校约有的家长持反对态度8、在频数分布直方图中,下列说法正确的是(    A.各小长方形的高等于相应各组的频率B.各小长方形的面积等于相应各组的频数C.某个小长方形面积最小,说明落在这个组内的数据最多D.长方形个数等于各组频数的和9、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是(  )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元10、下列说法中正确的是(    ).A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是,那么两人中射击成绩比较稳定的是_________.2、一组数据﹣1、2、3、4的极差是________.3、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差4513514918045135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)4、一组数据的平均数是,这组数据的方差为______.5、七年级(5)班20名女生的身高如下(单位:cm): 153 156 152 158 156 160 163 145 152 153 162 153 165 150 157 153 158 157 158 158(1)请你在下表中填出身高在以下各个范围的频数,百分比(每个范围包含下限,但不包含上限):身高(cm)140~150150~160160~170频数   百分比   (2)上表把身高分成___组,组距是___;(3)身高在___范围的人数最多.三、解答题(5小题,每小题10分,共计50分)1、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.时间/小时频数百分比4b1025%a15%820%1230%(1)本次调查的学生总人数为______;(2)求ab的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“”所对应的扇形圆心角的度数.2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了          名学生;(2)请补全类条形统计图;(3)扇形统计图中.类所对应的扇形圆心角的大小为          度;(4)该校共有1560名学生,估计该校表示“很喜欢”的类的学生有多少人?3、国家应急管理部、司法部、中华全国总工会、全国普法办共同举办的第三届全国应急管理普法知识竞赛于今年10月18日开赛.某校学生处在七年级和八年级开展了应急管理普法知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x表示,共分为四个等级:A.x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100);下面给出了部分信息:七年级C等级中全部学生的成绩为:86, 87, 83, 88, 84, 88, 86, 89, 89, 85.八年级D等级中全部学生的成绩为:92, 95, 98, 98, 98, 98, 98, 100, 100, 100.七八年级抽取的学生知识竞赛成绩统计表 平均数中位数众数满分率七年级91bc25%八年级918798m%根据以上信息,解答下列问题:(1)直接写出上述表中abcm的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的240名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次参加知识竞赛优秀的总人数.4、 “中国梦”是中华民族每一个人的梦,各中小学开展经典诵读活动,是“中国梦”教育这一宏大乐章里的响亮音符某学校在经典诵读活动中,对全校学生用A(优秀)、B(良好)、C(合格)、D(不合格)四个等级进行评价,现从中抽取若干名学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少名学生进行调查;(2)将图甲中的条形统计图补充完整;(3)求出图乙中D等级所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该校2000名学生中有多少名学生获得B等级的评价.5、某中学开展歌咏比赛,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,复赛成绩(满分为100分)如图所示. (1)根据图示填写表格:班级平均数(分)中位数(分)众数(分)九(1) 85 九(2)85 100(2)已知九年级(2)班复赛成绩的方差为160,计算九年级(1)班复赛成绩的方差,并分析哪个班的复赛成绩稳定. -参考答案-一、单选题1、C【分析】各组的频数的和就是总人数,再根据百分比、众数、中位数的定义逐一解题.【详解】解:A. 该学校教职工总人数是4+6+11+10+9+6+4=50人,正确,故A不符合题意;B. 年龄在小组的教职工人数占总人数的20%,正确,故B不符合题意;C. 教职工年龄的中位数在这一组,某教师40岁,则全校恰有10名教职工比他年轻说法是错误的,故C符合题意;D. 教职工年龄分布最集中的在这一组,正确,故D不符合题意,故选:C.【点睛】本题考查频数分布直方图,是重要考点,从图中获取正确信息是解题关键.2、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】由此可估计全班同学的家庭一个月节约用水的总量是故选:B.【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.3、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.【详解】解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为×(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)=42,中位数为42;众数为30,方差为 ×[5×(30﹣42)2+3×(42﹣42)2+3×(50﹣42)2+4×(51﹣42)2]=82.4.BCD正确.故选:A.【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键.4、C【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵∴成绩波动最小的班级是:丙班.故选:C.【点睛】此题主要考查了方差的意义,正确理解方差的意义是解题关键.5、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为加入数字2之后的平均数为∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为新数据的方差为∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.7、D【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;.该校约有的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.8、B【分析】根据频数直方图的定义逐一判断即可得答案.【详解】在频数分布直方图中,各小长方形的高等于频数与组距的比值,故A选项错误,在频数分布直方图中,各小长方形的面积等于相应各组的频数,故B选项正确, 在频数分布直方图中,某个小长方形面积最小,说明落在这个组内的数据最少,故C选项错误,在频数分布直方图中,各组频数的和等于各小长方形的高的和,故D选项错误,故选:B.【点睛】本题考查频数直方图,准确理解频数直方图中几个等量关系是解题关键.9、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.10、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.二、填空题1、小刘【分析】根据方差的意义即可求出答案.【详解】解:由于S小刘2S小李2,且两人10次射击成绩的平均值相等,
    ∴两人中射击成绩比较稳定的是小刘,
    故答案为:小刘【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,熟练运用方差的意义是解题的关键.2、5【分析】极差是最大值减去最小值,即即可.【详解】解:故答案是:5.【点睛】本题考查了极差,极差反映了一组数据变化范围的大小,解题的关键是掌握求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(2)(3)【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.【详解】解:两个班的平均成绩均为135次,故(1)错误;方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4、0.8【分析】根据平均数的计算公式先求出a的值,再根据方差公式代数计算即可.【详解】解:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S2= [(3-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2]=0.8,故答案为:0.8.【点睛】本题考查了方差,一般地设n个数据,x1x2,…xn的平均数为,则方差,此题难度不大.5、3
        10    150~160    【分析】(1)找出各个组中的人数,然后除以总人数即可得出所占百分比;(2)通过所给的数据把各个范围中的人数填入相应表格,根据所填写的信息及题意确定分成的组数、组距;(3)根据所填信息确定身高在哪个范围的人数最多即可.【详解】(1)填表:身高(cm)140~150150~160160~170频数1154百分比5%75%20%(2)上表把身高分成3组,组距是10;(3)身高在范围最多.【点睛】本题考查的是从统计图表中获取信息,关键是找出各个组中的人数,通过所给的数据把各个范围中的人数填入相应表格,然后据此得出相关结论.三、解答题1、(1)40  (2)a=6,b=,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,a=40-4-10-8-12=6,b=∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.2、(1)60;(2)补全统计图见详解;(3);(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可; (2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B类人数占总调查人数的比值,将计算结果乘即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:(人),故答案为:60;(2)D类人数为:(人),补全条形统计图,如图所示,(3)扇形统计图中,B类所对应的扇形圆心角的大小为:故答案为:(4)(人).∴估计该校表示“很喜欢”的A类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)a=10,b=89,c=100,m=7.5;(2)七年级的成绩更好,理由见解析;(3)估计两个年级此次知识竞赛中优秀的人数约为873人.【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去BCD所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)根据中位数,满分率解答即可;(3)总人数乘以90分(包含90分)以上人数所占比例即可【详解】解:(1)∵七年级C等有10人,C等所占比例为×100%=25%,a%=1-20%-45%-25%=10%,a=10,七年级A等有:40×10%=4(人),B等有:40×20%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的是第20名和第21名的成绩,分别是89,89,∴中位数b=89;∵七年级满分人数为:40×25%=10(人),∴众数c=100;八年级满分率为:×100%=7.5%,m=7.5;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)1800×45%+250××100%≈873(人),答:估计两个年级此次知识竞赛中优秀的人数约为873人.【点睛】本题考查扇形统计图、中位数、众数、平均数、利用数据进行决策,用样本估计总体等知识点,熟悉掌握相关知识点是正确解答的关键.4、(1)100名;(2)图见解析;(3);(4)700.【分析】(1)根据等级的条形统计图和扇形统计图的信息即可得;(2)根据(1)的结果,求出等级的学生人数,再补全条形统计图即可;(3)利用乘以等级所占的百分比即可得;(4)利用2000乘以等级所占的百分比即可得.【详解】解:(1)抽取调查的学生总人数为(名),答:共抽取了100名学生进行调查;(2)等级的人数为(名),则补全条形统计图如下:(3)图乙中等级所对应的扇形圆心角的度数为答:图乙中等级所对应的扇形圆心角的度数(4)(名),答:估计有700名学生获得等级的评价.【点睛】本题考查了条形统计图和扇形统计图的信息关联,熟练掌握统计调查的相关知识是解题关键.5、(1)九(1)班平均数为85,众数为85,九(2)班中位数为80;(2)70;(3)九年级(1)班复赛成绩的方差为70,九(1)班的方差小,成绩更稳定些.【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数、众数的定义和平均数的求法即可得答案;(2)根据方差公式计算可得九年级(1)班复赛成绩的方差,根据平均数相同,方差越小,成绩越稳定即可得答案.【详解】(1)由图可知:九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、75、80、100、100,九(1)班的平均数为(75+80+85+85+100)÷5=85,∵九(1)班的5个成绩中,85出现2次,∴九(1)的众数为85,∵九(2)班的5个成绩中,中间的数是80,∴九(2)班的中位数为80,填表如下: 平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100(2)∵九(1)班平均数为85,∴九(1)班方差s12=[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,∵九(2)班的方差为160,70<160,∴九(1)班的成绩更稳定些.【点睛】本题考查平均数、中位数、众数及方差,将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据叫做这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数称为这组数据的中位数;一组数据中,出现次数最多的数据称为这组数据的众数;方差越大,数据的波动越大;方差越小,数据的波动越小;熟练掌握相关定义及方差公式是解题关键. 

    相关试卷

    数学八年级下册第十七章 方差与频数分布综合与测试练习题:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。

    数学第十七章 方差与频数分布综合与测试巩固练习:

    这是一份数学第十七章 方差与频数分布综合与测试巩固练习,共23页。

    初中数学第十七章 方差与频数分布综合与测试复习练习题:

    这是一份初中数学第十七章 方差与频数分布综合与测试复习练习题,共19页。试卷主要包含了一组数据,一组数据a-1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map