初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共22页。试卷主要包含了数学老师将本班学生的身高数据,下列说法中正确的是.等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )A.2 B.11.1% C.18 D.2、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A., B., C., D.,3、篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高( )A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大4、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )A.11 B.10 C.9 D.85、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A.平均数是80 B.众数是60 C.中位数是100 D.方差是206、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是( )A.平均数 B.中位数 C.众数 D.方差7、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是( )A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%8、下列说法中正确的是( ).A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小9、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元10、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是( )A.中位数 B.方差 C.平均数 D.众数第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据的平均数是5,极差为3,方差为2,则另一组新数组的平均数是________,极差是________,方差是________.2、已知:①1,2,3,4,5的平均数是3,方差是2;②2,3,4,5,6的平均数是4,方差是2;③1,3,5,7,9的平均数是5,方差是8;④2,4,6,8,10的平均数是6,方差是8;请按要求填空:(1),,,,的平均数是 ,方差是 ;(2),,,,的平均数是 ,方差是 ;(3),,,,的平均数是 ,方差是 .3、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为,,,则小麦长势比较整齐的试验田是__________.4、一组数据7,2,1,3的极差为______.5、新兴农场果农随机从甲、乙、丙三个品种的枇杷树中各选10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示,他准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是______. 甲乙丙4444421.71.51.7 三、解答题(5小题,每小题10分,共计50分)1、疫情防控人人有责,为此我校在七、八年级举行了“新冠疫情防控”知识竞赛,从七、八年级各随机抽取了10名学生进行比赛(百分制),测试成绩整理、描述和分析如下:(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D:95≤x≤100)七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82八年级10名学生的成绩在C组中的数据是:94,90,92七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级bcd52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中 年级成绩更平衡,更稳定;(2)直接写出上述a、b、c的值:a= ,b= ,c= ;d= (3)我校八年级共1200人参加了此次调查活动,估计参加此次调查活动成绩优秀(x≥90)的人数2、随着经济的发展,我们身边的环境受到很大的影响,为了保护环境加强环保教育,某市实验中学组织500名学生参加义务收集废旧电池的活动,下面随机抽取50名学生对收集的废旧电池数量进行统计:废旧电池数/节34568人数/人10151276(1)这50名学生平均每人收集废旧电池多少节?(2)这组废旧电池节数的中位数,众数分别是多少?(3)根据统计发现,本次收集的各种废旧电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,根据资料显示,各种电池1节能污染水的量之比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,那么通过本次活动可减少受浸染的水多少吨?3、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.4、2021年9月起,重庆市各中小学为落实教育部政策,全面开展课后延时服务.某区教委为了了解该区中学延时服务的情况,随机抽查了甲、乙两中学各100名家长进行问卷调查.家长对延时服务的综合评分记为x,将所得数据分为5组(“很满意”:;“满意”:;“比较满意”:;“不太满意”:;“不满意”:;)区教委将数据进行分析后,得到如下部分信息:a.甲中学延时服务得分情况扇形统计图b.乙中学延时服务得分情况频数分布直方图c.甲、乙两中学延时服务得分的平均数、中位数、众数如表:学校平均数中位数众数甲797980乙85m83d.乙中学“满意组”的分数从高到低排列,排在最后的10个数分别是:.e.甲、乙两中学“满意组”的人数一样多.请你根据以上信息,回答下列问题:(1)直接写出a和m的值;(2)根据以上数据,你认为哪所中学的延时服务开展得更好?并说明理由(一条即可);(3)区教委指出:延时服务综合得分在70分及以上才算合格,请你估计甲中学2000名家长中认为该校延时服务合格的人数.5、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人? -参考答案-一、单选题1、A【分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选A.【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.2、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.3、A【分析】分别计算出原数据和新数据的平均数和方差即可得.【详解】解:原数据的平均数为=192.8,
则原数据的方差为[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,
新数据的平均数为=192,
则新数据的方差为[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,
所以平均数变小,方差变小,
故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:,分10组.故选:B.【点睛】本题考查了组距的划分,一般分为组最科学.5、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为、方差为.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.6、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.7、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.10、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.二、填空题1、11 6 8 【分析】根据方差和平均数的变化规律可得:数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1,极差为2×3,方差是方差为2×22,再进行计算即可.【详解】解:∵数据x1、x2、x3、x4、x5的平均数是5,极差为3,方差为2,∴新数据2x1+1、2x2+1、2x3+1、2x4+1、2x5+1的平均数是2×5+1=11,极差为2×3=6,方差为2×22=8,故答案为:11、6、8.【点睛】此题考查了方差的特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,若数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.2、(1),2 ;(2),8;(3),【分析】(1)数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,只需将数据的平均数加上(n−1)即可,而数据波动幅度不变;(2)数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,只需将原数据的平均数加上(n−2)即可,而数据波动幅度不变;;(3)由数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,将原数据的平均数乘以n,方差乘以n2即可得出答案.【详解】解:(1)∵数据n,n+1,n+2,n+3,n+4是在数据1,2,3,4,5的基础上每个数据均加上(n−1)所得,∴数据n,n+1,n+2,n+3,n+4的平均数3+n−1=n+2,方差依然是2,故答案为:n+2,2;(2)∵数据n,n+2,n+4,n+6,n+8是在数据2,4,6,8,10的基础上每个数据均加上(n−2)所得,∴n,n+2,n+4,n+6,n+8的平均数是6+n−2=n+4,方差依然是8,故答案为:n+4,8;(3)数据n,2n,3n,4n,5n是将1,2,3,4,5分别乘以n所得,∴数据n,2n,3n,4n,5n的平均数为3n,方差为2n2,故答案为:3n,2n2.【点睛】本题主要考查方差和平均数,解题的关键是掌握平均数和方差的性质.3、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】解:∵,,∴,∵3.8<4,∴S乙2<S甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.4、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为,故答案为:.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.5、乙【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到乙比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又乙的方差比甲小,所以乙的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是乙;故答案为:乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.三、解答题1、(1)八;(2)40;91.4;93;96;(3)840人【分析】(1)根据方差的意义求解即可;
(2)先求出八年级学生成绩落在C组人数所占百分比,再根据百分比之和为1求解可得a的值,然后根据平均数、中位数和众数的概念求解即可;
(3)用总人数乘以样本中成绩优秀(x≥90)的八年级学生人数对应的百分比即可.【详解】(1)∵七年级成绩的方差为52,八年级成绩的方差为50.4,
∴八年级成绩的方差小于七年级成绩的方差,
∴八年级成绩更平衡,更稳定;
故答案为:八;
(2)∵八年级学生成绩落在C组人数所占百分比为3÷10×100%=30%,
∴a%=1-(20%+10%+30%)=40%,即a=40;七年级的平均数=
将七年级成绩重新排列为:80,82,86,89,90,96,96,96,99,100,
则这组数据的中位数七年级的成绩中96出现次数最多,所以众数d=96,
故答案为:40;91.4;93;96;
(3)估计参加此次调查活动成绩优秀(x≥90)的八年级学生人数是1200×(1-20%-10%)=840(人).【点睛】考查方差、中位数、众数的意义和计算方法,扇形统计图,从统计图中获取数量之间的关系是解决问题的关键.2、(1)4.8节;(2)众数为4个,中位数为4.5节;(3)本次活动可减少受浸染的水3200000吨.【分析】(1)求出50名学生收集废旧电池的总数,再求平均数即可;(2)从统计表格即可求得众数为5,然后按从大到小给所有数据排序,求出中位数即可;(3)先求出这些电池可污染的水的数量即可解决问题.【详解】解:(1)50名学生平均每人收集废旧电池的节数=(10×3+15×4+12×5+7×6+6×8)÷50=4.8(节);(2)从统计表格得,众数为4节;由于收集3节和4节电池的人数有25个人,收集5节的人有12人,所以中位数=(4+5)÷2=4.5(节);(3)样本中电池总数4.8×50=240,由于本次收集的各种电池的数量比为:手机电池:7号电池:5号电池:1号电池=2:3:4:3,故可得出手机电池、7号电池、5号电池、1号电池与总数的比值分别为:,,,,即,,,,由于各种电池1节能污染水的量的比为:手机电池:7号电池:5号电池:1号电池=6:1:2:3,且1节7号电池能使500吨的水受到污染,故可得手机电池、5号电池、1号电池一节分别能污染水的吨数为500×6,500×2,500×3,故在50名学生收集的废电池可少受污染水的吨数为=320000(吨)320000÷50×500=3200000吨,答:本次活动可减少受浸染的水3200000吨.【点睛】本题考查了从统计图中获取信息的能力;对平均数、中位数和众数等概念的掌握程度.同时通过此题倡导学生参加义务收集废旧电池活动中来.3、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
(2)先求出乙队的平均成绩,再根据方差公式进行计算;
(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2= [(x1−)2+(x2−)2+…+(xn−)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、(1);;(2)见解析;(3)名【分析】(1)根据甲、乙两中学“满意组”的人数一样多得出甲组满意的人数为人,从而得出甲组满意所占总人数百分比,进而得出的值;根据中位数的计算方法得出乙组的中位数位于第和的平均数;(2)根据平均数以及中位数进行分析即可;(3)由甲组70分及以上所占百分比估算甲中学2000名家长中认为该校延时服务合格的人数即可.【详解】解:(1)∵甲、乙两中学“满意组”的人数一样多,∴甲满意的人数为人,∴甲满意的人数占甲组的百分比为:,∴,∴;乙学校中位数为第名和名的平均数,∴乙(中位数)=,∴;(2)从平均数来看,乙学校整体成绩高于甲学校整体成绩;从中位数来看,乙学校的高分段人数较多;综上:乙学校的延时服务开展得更好;(3)甲中学70分及以上的百分比=,(名),答:甲中学2000名家长中认为该校延时服务合格的人数为名.【点睛】本题考查了扇形统计图,频数分布直方图,中位数,平均数,由部分估计总体等知识点,读懂题意,理解相关定义是解本题的关键.5、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:(人),∴D组所占的比例为:,∴a的值为8;(2)C组频数为:,补全统计图如图所示:
(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,∴估计符合要求的人数为:(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共19页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步练习题,共22页。
这是一份数学八年级下册第十七章 方差与频数分布综合与测试测试题,共23页。试卷主要包含了在频数分布表中,所有频数之和等内容,欢迎下载使用。