年终活动
搜索
    上传资料 赚现金

    2022年最新京改版八年级数学下册第十七章方差与频数分布章节测试试题(含详细解析)

    2022年最新京改版八年级数学下册第十七章方差与频数分布章节测试试题(含详细解析)第1页
    2022年最新京改版八年级数学下册第十七章方差与频数分布章节测试试题(含详细解析)第2页
    2022年最新京改版八年级数学下册第十七章方差与频数分布章节测试试题(含详细解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共22页。
    京改版八年级数学下册第十七章方差与频数分布章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是(    ).A.想了解某河段的水质,宜采用全面调查 B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3 D.一组数据的波动越大,方差越小2、某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是(  )A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元3、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是(    A.0.25 B.0.3 C.2 D.304、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是(    A. B. C. D.5、为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是(    A.众数是 B.中位数是 C.平均数是 D.方差是6、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为(    A.3和2 B.4和3 C.5和2 D.6 和27、数字“20211202”中,数字“2”出现的频数是(  )A.1 B.2 C.3 D.48、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差6.20.256.00.585.80.126.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选(    A.甲 B.乙 C.丙 D.丁9、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是(     )A.调查方式是普查 B.该校只是个家长持反对态度C.样本是个家长 D.该校约有的家长持反对态度10、用计算器计算方差时,要首先进入统计计算状态,需要按键(    A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.2、八年级(1)、(2)两班人数相同,在同一次数学单元测试中,班级平均分和方差如下:则成绩较为稳定的班级是___.3、新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为,第二周体温的方差为,试判断两者之间的大小关系______(用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图4、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.5、小张所在的公司共有600名员工,他为了解公司员工所使用的手机品牌情况,随机调查了部分员工,并将调查得到的数据绘制成如图所示的统计图,那么小张所在公司使用“华为”品牌手机的人数约是_____人.三、解答题(5小题,每小题10分,共计50分)1、某校随机抽取部分学生,对“学习习惯”进行问卷调查.设计的问题:对自己做错的题目进行整理、分析、改正;答案选项为:A.很少;B.有时;C.常常;D.总是.将调查结果的数据进行了整理、绘制成如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)填空:a        %,b       %;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中“常常”和“总是”对错题进行整理、分析、改正的学生各有多少名?2、某校对七年级学生进行“综合素质”评价,评价的结果分为ABCD四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B等级人数所占百分比是     C等级所在扇形的圆心角是     度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有     名.3、经济快速发展使得网店的规模越来越大,现甲、乙两家电商公司拟各招聘一名网络客服,日工资方案如下:甲公司规定底薪100元,每销售一件产品提成1元;乙公司规定底薪140元,日销售量不超过44件没有提成,超过44件且不超过48件时,超过的部分每件提成8元,超过48件的部分每件提成10元.现随机抽取了甲、乙两家销售公司100天的销售单,对两个公司的推销员平均每天销售单数进行统计,数据如图.(1)如果甲公司一名网络客服的日销售件数为46件,则甲公司这名网络客服当日的工资为多少元?(2)设乙公司一名网络客服的日工资为y(单位:元),日销售件数为x件,写出乙公司一名网络客服的日工资y(单位:元)与销售件数x的关系式;(3)小华利用假期到两家公司中的一家应聘网络客服,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.4、某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查         名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有多少人?5、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80≤x<85a20%85≤x<9080b90≤x<956030%95≤x<10020 根据以上图表提供的信息,解答下列问题:(1)写出表中ab的数值:a      b      (2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数. -参考答案-一、单选题1、B【分析】分别根据全面调查和抽样调查的定义,众数的定义,方差的性质进行判断即可.【详解】解:A、想了解某河段的水质,宜采用抽样调查,故本选项不正确,不符合题意;B、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确,符合题意;C、数据1,1,2,2,3的众数是1和2,故本选项不正确,不符合题意;D、一组数据的波动越大,方差越大,故本选项不正确,不符合题意;故选:B.【点睛】本题考查了全面调查和抽样调查,方差,众数,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.一组数据中出现次数最多的数据叫做众数.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、A【详解】解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为150元,故选项A不正确;B、共20人,样本容量为20,故选项B正确;C、极差为500﹣50=450元,故选项C正确;D、该企业员工最大捐款金额是500元,故选项D正确.故选:A .【点睛】本题考查脂肪性获取信息,中位数,样本容量,极差,掌握相关概念是解题关键.3、B【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
    选择“5G时代”的人数为:30人,
    ∴选择“5G时代”的频率是:=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.4、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A选项正确,不符合题意;这组数据的中位数为:6,故B选项正确,不符合题意;这组数据的平均数为,故C选项正确,不符合题意;这组数据的方差为:,故D选项不正确,符合题意.故选D.【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:6、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得解得x=6,∴这组数据的方差是故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.7、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.8、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.9、D【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;.该校约有的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.10、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.二、填空题1、0.15【分析】求出40~50元的人数,再根据频率=频数÷总数进行计算即可.【详解】解:“40~50元”的人数为:200−10−30−50−80=30(人),“40~50元”的频率为:30÷200=0.15,故答案为:0.15.【点睛】本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.2、甲班【分析】根据平均数相同,方差反应一组数据与平均数的离散程度越小说明比较稳定即可得出结论.【详解】解:∵两班的平均成绩相同,,根据方差反应一组数据与平均数的离散程度越小说明比较稳定,∴成绩较为稳定的班级是甲班,故答案为甲班.【点睛】本题考查平均数与方差,掌握平均数的求法与方差的求法,熟练方差反应一组数据与平均数的离散程度,方差越大离散的程度越大,方差越小离散程度越小,越稳定,与整齐等是解题关键.3、<【分析】方差反应是数据的波动程度,方差越大,波动性越大,结合折线图可得小丽第一周居家体温在之间,第二周居家体温在之间,从最大值与最小值的差可以得到答案.【详解】解:根据折线统计图很容易看出小丽第一周居家体温在之间,第二周居家体温在之间,小丽第一周居家体温数值波动小于其第二周居家体温数值波动,故答案为:【点睛】本题考查的是折线统计图,数据的波动性即方差,理解方差的含义是解题的关键.4、20【分析】根据频数等于总数乘以频率,即可求解.【详解】解:调查的居民超出了标准量的有 户.故答案为:20.【点睛】本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.5、210【分析】用样本中使用华为品牌的人数所占比例乘以总人数即可得出答案.【详解】解:小张所在公司使用“华为”品牌手机的人数约是600×=210(人),故答案为:210.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.三、解答题1、(1)12,36;(2)见解析;(3)720人【分析】(1)首先计算出抽查的学生总数,然后再计算ab的值即可;(2)计算出“常常”所对的人数,然后补全统计图即可;(3)利用样本估计总体的方法计算即可.【详解】解:(1)调查总人数:(人),故答案为:12,36;(2)“常常”所对的人数:200×30%=60(人),补全统计图如图所示:(3)2000×30%=600(人),2000×36%=720(人),答:“常常”对错题进行整理、分析、改正的有600人,“总是”对错题进行整理、分析、改正的有720人.【点睛】本题考查条形统计图与扇形统计图的综合运用,熟练掌握抽样的各项数目、各项百分比、总数、各项圆心角及整体的各项数目、各项百分比、总数等的计算方法是解题关键.2、(1)25%;72;(2)见解析;(3)700.【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中AB等级人数和所占比例即可.【详解】解:(1)∵被调查的人数为4÷10%=40(人),B等级人数为40﹣(18+8+4)=10(人),B(良好)等级人数所占百分比是 ×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×=72°,故答案为:25%;72;(2)补全条形统计图如下:(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.3、(1)146元;(2)y;(3)乙公司,理由见解析【分析】(1)根据甲公司的日工资方案进行计算即可;
    (2)根据乙公司的日工资方案进行解答即可得出结果;
    (3)分别表示出甲、乙两间公司的平均日工资,再进行解答即可.【详解】解:(1)甲公司这名网络客服当日的工资为:100+46×1=146(元),∴甲公司这名网络客服当日的工资为146元;(2)当x≤44时,y=140;当44<x≤48时,y=140+8(x﹣44)=8c﹣212;x>48时,y=140+8×(48﹣44)+10(x﹣48)=10x﹣308,∴乙公司一名网络客服的日工资y与销售件数x的关系式为:y (3)甲公司一名网络客服的平均日工资为:145(元);乙公司一名网络客服的平均日工资为:=162.8(元),∵145<162.8,∴如果从日均收入的角度考虑,建议他去乙公司.【点睛】本题主要考查一次函数的应用,解答的关键是分析清楚题意,明确其中的等量关系.4、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好运动的人数为,所占百分比为共调查人数为:故答案为:爱好上网的人数所占百分比为爱好上网人数为:爱好阅读人数为:补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为估计爱好运用的学生人数为:故答案为:【点睛】本题考查统计的基本知识,样本估计总体,解题的关键是正确利用两幅统计图的信息.5、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:(人),故答案为:40;40%;(2)成绩在的学生人数所占百分比为:故频数分布表为:分数段频数百分比80≤x<854020%85≤x<908040%90≤x<956030%95≤x<1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键. 

    相关试卷

    北京课改版第十七章 方差与频数分布综合与测试习题:

    这是一份北京课改版第十七章 方差与频数分布综合与测试习题,共22页。试卷主要包含了2020年某果园随机从甲等内容,欢迎下载使用。

    数学北京课改版第十七章 方差与频数分布综合与测试课后复习题:

    这是一份数学北京课改版第十七章 方差与频数分布综合与测试课后复习题,共21页。

    数学八年级下册第十七章 方差与频数分布综合与测试练习题:

    这是一份数学八年级下册第十七章 方差与频数分布综合与测试练习题,共22页。试卷主要包含了2020年某果园随机从甲,某校八年级人数相等的甲等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map