初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共19页。试卷主要包含了一组数据等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )A.平均数 B.中位数 C.众数 D.方差2、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2= [(x188)2+(x288)2+…+(x888)2],以下说法不一定正确的是( )A.育才中学参赛选手的平均成绩为88分B.育才中学一共派出了八名选手参加C.育才中学参赛选手的中位数为88分D.育才中学参赛选手比赛成绩团体总分为704分3、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )
A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%4、数字“20211202”中,数字“2”出现的频数是( )A.1 B.2 C.3 D.45、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A.平均数 B.中位数 C.方差 D.众数6、中学生骑电动车上学给交通安全带来隐患,为了了解某中学个学生家长对“中学生骑电动车上学”的态度,从中随机调查个家长,结果有个家长持反对态度,则下列说法正确的是( )A.调查方式是普查 B.该校只是个家长持反对态度C.样本是个家长 D.该校约有的家长持反对态度7、为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.下图是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( ) A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则可估计喜爱“科普常识”的学生约有360个C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为8、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数 B.中位数 C.平均数 D.方差9、李大伯种植了100棵“曙光”油桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的油桃,分别称得每棵树所产油桃的质量如下表:据调查,市场上今年油桃的批发价格为每千克15元.用所学的统计知识估计今年李大伯果园油桃的总产量(损耗忽略不计)与按批发价格销售油桃所得的总收入分别约为( )序号12345678910质量(千克)44515747485049534952A.500千克,7500元 B.490千克,7350元C.5000千克,75000元 D.4850千克,72750元10、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A.平均数是80 B.众数是60 C.中位数是100 D.方差是20第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.3、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.4、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.5、小明想知道一碗芝麻有多少粒,于是就从中取出粒涂上黑色,然后放入碗中充分搅拌后再随意取出粒,其中有粒是黑色芝麻,因此可以估算这碗芝麻有________粒.三、解答题(5小题,每小题10分,共计50分)1、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据.载客量/人组中值频数(班次)1≤x<2111221≤x<41a841≤x<61b20(1)求出表格中a=_______,b=______.(2)计算该2路公共汽车平均每班的载客量是多少?2、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:成绩(分)人数(人)6554根据以上信息,解答下列问题:(1)成绩这一段的人数占被抽取总人数的百分比为_____________;(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数.3、佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下: (1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.4、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955乙组成绩统计图
根据上面的信息,解答下列问题:(1)甲组的平均成绩为______分,______,甲组成绩的中位数是______,乙组成绩的众数是______;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?5、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人? -参考答案-一、单选题1、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.2、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可.【详解】解:∵参赛选手比赛成绩的方差计算公式为:S2= [(x1−88)2+(x2−88)2+…+(x8−88)2],∴育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为88×8=704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C.【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式.3、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.4、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.5、B【分析】根据中位数的特点,与最高成绩无关,则计算结果不受影响,据此即可求得答案【详解】根据题意以及中位数的特点,因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,故选B【点睛】本题考查了中位数,平均数,方差,众数,理解中位数的意义是解题的关键,中位数是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数, 因为中位数是通过排序得到的,所以它不受最大、最小两个极端数值的影响,而且部分数据的变动对中位数也没有影响.6、D【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;.在调查的400个家长中,有360个家长持反对态度,该校只有个家长持反对态度,故本项错误,不符合题意;.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;.该校约有的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.7、C【分析】根据两个统计图的特征依次分析各选项即可作出判断,先根据其他类求得总人数,进而根据扇形统计图求得喜欢“科普常识”的学生人数,从而判断A选项,根据喜欢“科普常识”的学生所占的百分比乘以全年级人数即可判断B选项,根据总人数减去其他项的人数即可求的喜欢“小说”的人数,从而判断C选项,根据喜欢“漫画”的人数求得百分比,进而求得所占圆心角的度数从而判断D选项.【详解】A.喜欢“科普常识”的学生有30÷10%×30%=90人,正确,不符合题意;B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有1200×30%=360个,正确,不符合题意;C.喜欢“小说”的人数为30÷10%-60-90-30=120人,错误,故本选项符合题意.D.在扇形统计图中,“漫画”所在扇形的圆心角为360°×60÷(30÷10%)=72°,正确,不符合题意;故选C.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.9、C【分析】先算出10棵油桃树的平均产量,再估计100棵油桃树的总产量,最后用批发价乘100棵油桃树的总产量即可得.【详解】解:选出的10棵油桃树的平均产量为:=50(千克),估计100棵油桃树的总产量为:50×100=5000(千克),按批发价的总收入为:15×5000=75000(元).故选C.【点睛】本题考查了平均数,用样本估计总体,解题的关键是掌握平均数的算法.10、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可.【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中位数是90、平均数为、方差为.观察只有选项A正确,故选:A.【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键.二、填空题1、变大【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0,∴这组数据的平均数是,∴这8次跳远成绩的方差是:∵0.0225>,∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键.2、8 9 【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1,x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.3、【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5∴ ∴ ∴这组数据的方差是: 故答案为:.【点睛】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.4、15【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.5、2000【分析】设碗中有芝麻粒,根据取出100粒刚好有记号的5粒列出算式,再进行计算即可.【详解】解:设碗中有芝麻粒,根据题意得:,解得:.故答案为:2000.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是掌握利用样本中的数据对整体进行估算.三、解答题1、(1)31;51;(2)43人.【分析】(1)利用组中值的计算方程直接计算即可得;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解即可.【详解】解:(1),,故答案为:31;51;(2)(人),答:该2路公共汽车平均每班的载客量是43人.【点睛】题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键.2、(1);(2)182人.【分析】(1)由题意根据图表得出成绩这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩这一段的人数为:6人,所以成绩这一段的人数占被抽取总人数的百分比为:,故答案为:;(2)根据图表可得成绩不低于70分的学生人数为:(人),所以剪纸比赛成绩不低于70分的学生人数为:(人).答:剪纸比赛成绩不低于70分的学生人数有182人.【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键.3、(1)见解析;(2)72゜;(3)750人【分析】(1)根据参与调查的总人数及条形统计图中的数据信息,可求得选择美术的人数,从而可补全条形统计图;(2)求得选择书法在参与调查的总人数中所占的百分比,它与360度的积即是所求扇形圆心角的度数;(3)求出选择音乐兴趣班的百分比,即可估计出3000名学生中选择音乐兴趣班的学生人数.【详解】(1)由条形统计图知,选择除美术兴趣班外的学生共有:150+180+120+30=480(人),则选择美术兴趣班的学生有:600-480=120(人),所以可以补充完整条形统计图,补全的条形统计图如下:
(2)选择书法兴趣班的学生人数占所参与调查的学生人数的百分比为:,则表示“书法”的扇形圆心角的度数为20%×360゜=72゜(3)选择音乐兴趣班的学生人数占所参与调查的学生人数的百分比为:,则估计在3000名学生中选择音乐兴趣班的学生人数大约有;25%×3000=750(人)【点睛】本题是条形统计图与扇形统计图的综合,考查了求扇形统计图中圆心角的度数,画条形统计图,用样本的百分数估计总体的百分数,关键是读懂统计图中包含的信息,能正确运用这些信息解决问题.4、(1)8.7,3,8.5,8;(2)乙组成绩的方差为0.75,乙组的成绩更加稳定.【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案.【详解】解:(1)平均成绩为:,,甲组成绩一共有20人,从小到大最中间为8和9,则中位数为,乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2),,,∴,∴乙组的成绩更加稳定.【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的稳定性判断,理解定义及方差的算法是解题关键.5、(1)人;(2)画图见解析;(3)人【分析】(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有人,(2)喜欢排球的占比为: 所以喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.
相关试卷
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共20页。试卷主要包含了为考察甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试同步达标检测题,共21页。试卷主要包含了2020年某果园随机从甲等内容,欢迎下载使用。
这是一份2020-2021学年第十七章 方差与频数分布综合与测试综合训练题,共20页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。