搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析京改版八年级数学下册第十七章方差与频数分布专题攻克试题(含解析)

    2022年精品解析京改版八年级数学下册第十七章方差与频数分布专题攻克试题(含解析)第1页
    2022年精品解析京改版八年级数学下册第十七章方差与频数分布专题攻克试题(含解析)第2页
    2022年精品解析京改版八年级数学下册第十七章方差与频数分布专题攻克试题(含解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十七章 方差与频数分布综合与测试同步练习题

    展开

    这是一份2020-2021学年第十七章 方差与频数分布综合与测试同步练习题,共21页。试卷主要包含了一组数据1,新型冠状病毒肺炎,下列一组数据等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、在频数分布表中,所有频数之和(    A.是1 B.等于所有数据的个数C.与所有数据的个数无关 D.小于所有数据的个数2、数学老师将本班学生的身高数据(精确到1厘米)交给甲、乙两同学,要求他们各自绘制一幅频数分布直方图.经确认,甲绘制的图是正确的,乙在整理时漏了一个数据.由此可判断,下列说法错误的是(    A.该班共有学生60人B.乙在整理时遗漏的数据一定在169.5-173.5这个范围内C.某同学身高155厘米,那么班上恰有10人比他矮D.某同学身高165厘米,那么班上比他高的人数不超过全班人数的25%3、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2 平均数(单位:秒)52m5250方差s2(单位:秒24.5n12.517.5根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则mn的值可以是(  )A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=184、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是(    A. B. C. D.5、若样本的平均数为10,方差为2,则对于样本,下列结论正确的是(    A.平均数为30,方差为8 B.平均数为32,方差为8C.平均数为32,方差为20 D.平均数为32,方差为186、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S2=6,S2=24,S2=25.5,S2=36,则这四名学生的数学成绩最稳定的是(  )A.甲 B.乙 C.丙 D.丁7、一组数据1、2、2、3中,加入数字2,组成一组新的数据,对比前后两组数据,变化的是(    A.平均数 B.中位数 C.众数 D.方差8、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是(    A.2 B.11.1% C.18 D.9、下列一组数据:-2、-1、0、1、2的平均数和方差分别是(    A.0和2 B.0和 C.0和1 D.0和010、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为(    ).A.9 B.8 C.7 D.6第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.2、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.3、一个样本有20个数据:35  31  33  35  37  39  35  38  40  39  36  34  35  37  36  32  34  35  36  34.在列频数分布表时,如果组距为2,那么应分成________组,36在第________组中.4、 “绿水青山就是金山银山”为了响应党中央对环境保护的号召,某校要从报名的甲、乙、丙三人中选取一人去参加南宁市举办的环保演讲比赛经过两轮初赛后,甲、乙、丙三人的平均成绩都是89,方差分别是.你认为__________参加决赛比较合适.5、已知一组数据x1x2x3,方差是2,那么另一组数据2x1﹣4,2x2﹣4,2x3﹣4的方差是 ______________.三、解答题(5小题,每小题10分,共计50分)1、为迎接中国共产党建党100周年,某校开展了以“不忘初心跟党走”为主题的读书活动,学校对本校八年级学生9月份“阅读该主题相关书籍的读书量”(简称“读书量”)进行了随机抽样调查,对所有随机抽取学生的“读书量”(单位:本)进行了统计,并将调查结果绘制成如下两幅不完整的统计图.(1)请直接补全条形统计图;(2)本次所抽取学生9月份“读书量”的众数为     本,中位数为     本;(3)根据抽样调查的结果,请你估计该校八年级1000名学生中,9月份“读书量”不少于4本的学生人数.2、在新冠状病毒防控期间,各地纷纷展开了停课不停学活动,学校为了了解学生自主阅读情况,抽样调查了部分学生每周用于自主阅读的时间,过程如下:收集数据:从全校随机抽取20名学生,每周用于自主阅读时间的调查,数据如下:(单位:30  60  81  50  44  110  130  146  80  10060  80  120  140  75  81  10  30  81  92整理数据:按下表分段整理样本数据:自主阅读时间等级A人数384分析数据:样本的平均数、中位数、众数如下表所示:平均数中位数众数80请回答下列问题:(1)表格中的数据_______,________,_______;(2)用样本中的统计量估计该校学生每周用于课外阅读时间的等级为______;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读________本课外书.3、为庆祝五四青年节,学校计划在“五四”前夕举行班级歌咏比赛,要确定一首喜欢唱的人数最多的歌曲为每班必唱歌曲.为此提供代号为四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制成如下的两幅不完整的统计图.请根据图1,图2所提供的信息,解答下列问题:(1)本次抽样调查的学生有多少名?(2)请将条形统计图补充完整;(3)求扇形图中的圆心角度数;(4)由统计图发现喜欢唱的人数最多的歌曲为哪一首?若全校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生喜欢唱此歌曲?4、某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:78971010910101010879810109109(1)甲队成绩的中位数是          分,乙队成绩的众数是          分;(2)计算乙队的平均成绩;(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖.5、实行垃圾分类是保护生态环境的有效措施.为了解社区居民掌握垃圾分类知识的情况,增强居民环保意识,某校环境保护兴趣小组从AB两个小区各随机抽取20位居民进行垃圾分类知识测试(测试满分为10分),现将测试成绩进行整理、描述和分析如下:A小区20位居民的测试成绩如下:6,7,7,4,8,10,9,9,7.6,8,6,5,8,8,9,9,7,8,5B小区20位居民测试成绩的条形统计图如下:AB小区抽取的居民测试成绩统计表如下:小区AB平均数7.3a中位数7.5b众数c9方差2.413.51根据以上信息,回答下列问题:(1)填空:a      b      c      (2)请结合数据,分析本次测试中两个小区居民对垃圾分类知识的了解情况,并提出一条合理化建议. -参考答案-一、单选题1、B【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解.【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确    B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关    ,故选项C不正确;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确.故选择B.【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键.2、B【分析】由两幅统计图的数据逐项计算判断即可.【详解】解:根据甲绘制的统计图,可知该班共有学生10+15+20+10+5=60(人),故A正确,不符合题意;根据甲绘制的统计图,可知该班身高小于154.5的学生有10人,故C正确,不符合题意;根据甲绘制的统计图,可知该班身高大于或等于165的学生有15人,,故D正确,不符合题意;根据甲的直方图能够得出身高在(169.5﹣174.5)cm之间的人数为5人,从乙图中发现,身高在(169.5﹣173.5)cm的人数是4人,因此,乙在整理时遗漏的数据一定在169.5-174.5这个范围内,故B错误,符合题意;故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、A【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.4、D【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【分析】由样本的平均数为10,方差为2,可得再利用平均数公式与方差公式计算的平均数与方差即可.【详解】解: 样本的平均数为10,方差为2, 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.6、A【分析】根据方差的意义求解即可.【详解】解:∵S2=6,S2=24,S2=25.5,S2=36,S2S2S2S2∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.掌握方差的意义是解题的关键.7、D【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得:原来的平均数为加入数字2之后的平均数为∴平均数没有发生变化,故A选项不符合题意;原数据处在最中间的两个数为2和2,∴原数据的中位数为2,把新数据从小到大排列为1、2、2、2、3,处在最中间的数是2,∴新数据的中位数为2,故B选项不符合题意;原数据中2出现的次数最多,∴原数据的众数为2,新数据中2出现的次数最多,∴新数据的众数为2,故C选项不符合题意;原数据的方差为新数据的方差为∴方差发生了变化,故D选项符合题意;故选D.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.8、A【分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,∴频数是2,故选A.【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.9、A【分析】根据平均数公式与方差公式计算即可.【详解】解:故选择A.【点睛】本题考查平均数与方差,掌握平均数与方差公式是解题关键.10、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.二、填空题1、【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5 ∴这组数据的方差是: 故答案为:【点睛】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.2、20【分析】根据频数等于总数乘以频率,即可求解.【详解】解:调查的居民超出了标准量的有 户.故答案为:20.【点睛】本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.3、5    3    【分析】确定组数时依据公式:组数=极差÷组距,计算时应该注意,组数应为正整数,若计算得到的组数为小数,则应将小数部分进位;再确定36所在的组数即可.【详解】解:极差为:,所以应分成5组,第一组为,第二组为,第三组为所以36在第3组中,故答案为5,3【点睛】本题考查的是组数的计算,属于基础题,熟练掌握“组数=极差÷组距”是解答本题的关键.4、丙【分析】根据方差越小,成绩越稳定即可判断.【详解】解:∵,且1.5<3.3<12,丙的成绩最稳定,丙参加决赛比较合适,故答案为:丙.【点睛】本题主要考查方差的意义,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、8【分析】设这组数据的平均数为,则另一组数据的平均数为,因为数据的方差为,所以数据的方差为,进行计算即可得.【详解】解:设这组数据的平均数为,则另一组数据的平均数为∵数据的方差为:∴数据的方差为:= = = =8故答案为:8.【点睛】本题考查了方差,解题的关键是掌握方差的公式.三、解答题1、(1)见解析;(2)3,3;(3)估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人.【分析】(1)由2本人数及其所占百分比可得总人数,再根据百分比之和为1求出读书4本的人数所占百分比,最后乘以总人数得到其人数即可补全图形;(2)根据众数、中位数的定义即可得出答案;(3)总人数乘以样本中“读书量”不少于4本的学生人数所占百分比即可.【详解】解:(1)抽样调查的学生总数为:=50(人),“读书量”4本的人数所占的百分比是1-10%-10%-20%-40%=20%,“读书量”4本的人数有:50×20%=10(人),
    补全图1的统计图如下,
     (2)根据统计图可知众数为3,把这些数从小到大排列,中位数是第25、26个数的平均数,则中位数是=3(本);故答案为:3,3;(3)根据题意得,1000×(10%+20%)=300(人),答:估计该校八年级学生中,9月份“读书量”不少于4本的学生有300人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)5,80.5,81;(2)B;(3)13【分析】(1)用总人数减去A等级的人数即可求出a的值;根据中位数概念即可求出b的值;根据众数的概念即可求出c的值;(2)根据平均数,中位数和众数即可得出该校学生每周用于课外阅读时间的等级;(3)用阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.【详解】(1)20名学生每周用于自主阅读的时间从小到大排列为如下:10,30,30,44,50,60,60,75,80,80,81,81,81,92,100,110,120,130,140,146,∵第10、11个数据分别为80、81, ∴中位数出现次数最多的数是81,∴众数是81.故答案为:5,80.5,81;(2)∵平均数为80,中位数为80.5,众数为81,∴用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B故答案为:B;(3)估计该校学生每人一年(按52周计算)平均阅读课外书为(本),故答案为:13.【点睛】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.3、(1)本次抽样调查的学生有180人;(2)见解析;(3)72°;(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【分析】(1)用曲目D的人数除以其占比即可得到答案;(2)根据(1)所求,先算出曲目C的人数,然后补全统计图即可;(3)用360度乘以曲目A的人数占比即可得到答案;(4)根据统计图可知喜欢曲目C的人数最多,然后用全校人数乘以样本中曲目C的占比即可得到答案.【详解】解:(1)由题意得:总人数人,答:本次抽样调查的学生有180人;(2)由(1)得喜欢曲目C的人数人,∴补全条形统计图如下所示:(3)由题意得扇形图中A的圆心角度数(4)由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有人,答:由统计图可知喜欢唱的人数最多的歌曲是C,估计全校共有480人喜欢唱此歌曲.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,补全统计图,求扇形圆心角度数等等,读懂统计图是解题的关键.4、(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙【分析】(1)先将甲队的成绩按从小到大的顺序排列,可得位于第5位和第6位的分别为9和10 ,可得甲队成绩的中位数是9.5分,再由乙队成绩中10出现的次数最多,可得乙队成绩的众数是10分;(2)利用乙队成绩的总和除以10,即可求解;(3)分别两队的平均成绩和方差,即可求解.【详解】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,∴甲队成绩的中位数是 分,∵乙队成绩中10出现了4次,出现的次数最多,∴乙队成绩的众数是10分;(2)乙队的平均成绩为 分;(3)甲队的平均成绩为 分,甲队成绩的方差为乙队成绩的方差为∴甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,∴乙队的成绩更加稳定,选择乙.【点睛】本题主要考查了求一组数据的中位数,众数,平均数,利用方差做决策,熟练掌握一组数据中位于正中间的一个数或两个数的平均数是中位数;出现次数最多的数是众数;平均数等于数据的总和除以个数;方差越小,越稳定是解题的关键.5、(1)7.3、7.5、8;(2)A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据平均数、中位数、方差的意义求解即可.【详解】解:(1)A小区20位居民的测试成绩中8分出现次数最多,有5次,A小区的众数c=8,有统计图数据可知B小区20位居民的测试成绩的平均数a=7.3,B小区一共有20位居民参加测试,B小区20位居民的测试成绩的中位数为第10位和第11位成绩的平均数,而第10位的成绩为7,第11位的成绩为8,B小区20位居民的测试成绩的中位数b=7.5,故答案为:7.3、7.5、8;(2)比较AB小区20位居民的测试成绩知,两小区居民测试成绩的平均数、中位数均相等,而A小区测试成绩的方差小于B小区,A小区测试成绩波动幅度小;建议:加强对B小区保护生态环境意识(答案不唯一).【点睛】本题主要考查了求平均数,中位数和众数,以及平均数,中位数,众数和方差的意义,熟知相关知识是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试精练,共20页。试卷主要包含了下列说法中正确的是.,数学老师将本班学生的身高数据,2020年某果园随机从甲等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共20页。试卷主要包含了在一次射击训练中,甲等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试巩固练习,共21页。试卷主要包含了下列说法正确的是,下列说法中正确的是.等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map