年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十七章方差与频数分布同步训练试题(含详解)

    2021-2022学年度京改版八年级数学下册第十七章方差与频数分布同步训练试题(含详解)第1页
    2021-2022学年度京改版八年级数学下册第十七章方差与频数分布同步训练试题(含详解)第2页
    2021-2022学年度京改版八年级数学下册第十七章方差与频数分布同步训练试题(含详解)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试测试题,共21页。试卷主要包含了某排球队6名场上队员的身高,一组数据a-1等内容,欢迎下载使用。
    京改版八年级数学下册第十七章方差与频数分布同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期个数11121013131312对于小强做引体向上的个数,下列说法错误的是(    A.平均数是12 B.众数是13C.中位数是12.5 D.方差是2、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是(   
    A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%3、年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )A.甲 B.乙 C.都一样 D.不能确定4、小明3分钟共投篮80次,进了50个球,则小明进球的频率是(    A.80 B.50 C.1.6 D.0.6255、某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为188cm的队员换下场上身高为194cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小 D.平均数变大,方差变大6、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是(    A.甲团 B.乙团 C.丙团 D.丁团7、一个有80个样本的数据组中,样本的最大值是145,最小值是50,取组距为10,那么可以分成(    )组.A.10 B.9 C.8 D.78、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为(    A.11 B.10 C.9 D.89、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是(    A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n10、下列说法正确的是(  )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据的平均数是,这组数据的方差为______.2、为了在甲、乙两位同学中选拔一人参加市电视台组织的成语听写大会,对他们的成语水平进行了10次跟踪测试.分析两人的成绩发现:=84, =83.2,=13.2, =26.36,由此学校决定让甲去参加比赛,理由是_______.3、现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是____.4、已知一组数据abcde的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.5、已知样本25,21,25,21,23,25,27,29,25,28,30,29,26,24,25,27,27,22,24,26,若组距为2,那么应分为_____组,在24.5~26.5这一组的频数是_____.三、解答题(5小题,每小题10分,共计50分)1、对饮食健康越来越关注,特别关注食物的热量高低某校现在对学生食品的热量进行调查,随机从八、九年级中各随机抽取20名学生,对其食品热量进行整理、描述和分析(热量值用表示,共分为四个等级:ABCD),下面给出了部分信息.八年级20名学生食品的热量中B等级包含的所有数据为:73,76,76,77,77,77,79.九年级20名学生食品的热量是:64,64,66,68,69,70,72,74,77,78,80,82,85,85,85,85,86,93,96,101.八、九年级抽取的学生食品热量统计表年级八年级九年级平均数7979中位数a79众数81b根据以上信息,解答下列问题:(1)填空:上述图表中____________, ____________.(2)根据图表中的数据,判断八、九年级中哪个年级学生食品的热量更高?请说明理由(写出一条理由即可);(3)若该校八、九年级分别有1500,1600名学生,估计学生吃的食品的热量为A等级的学生共有多少人?2、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?3、虎林市教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数.(2)求出活动时间为5天的学生人数,并补全频数分布直方图.(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?4、表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是_______分;中位数是_______分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).5、甲、乙两人在5次打靶测试中命中的环数如下: 平均数众数中位数方差8 80.4 9 3.2甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么? -参考答案-一、单选题1、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.2、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.3、A【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.【详解】解:甲选手平均数为:乙选手平均数为:甲选手的方差为:乙选手的方差为: ∵可得出:则甲选手的成绩更稳定,故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、D【分析】根据频率等于频数除以数据总和,即可求解.【详解】∵小明共投篮80次,进了50个球,∴小明进球的频率=50÷80=0.625,故选D.【点睛】本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键.5、A【分析】由题意分别计算出原数据和新数据的平均数和方差进行比较即可得出答案.【详解】解:原数据的平均数为则原数据的方差为×[(180-188)2+(184-188)2+(188-188)2+(190-188)2+(192-188)2+(194-188)2]= 新数据的平均数为则新数据的方差为×[(180-187)2+(184-187)2+(188-187)2+(190-187)2+(188-187)2+(192-187)2]= 所以平均数变小,方差变小,
    故选:A【点睛】本题主要考查方差和平均数,一般地设n个数据,x1x2,…xn的平均数为x,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、A【分析】求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【详解】解:145-50=95,
    95÷10=9.5,
    所以应该分成10组.
    故选A.【点睛】本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.8、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:分10组.故选:B.【点睛】本题考查了组距的划分,一般分为组最科学.9、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n∴数据abcdefg的平均数是m+1,方差是n
    ∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;
    ∵数据abcdefg的方差是n
    ∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n
    故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.10、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.二、填空题1、0.8【分析】根据平均数的计算公式先求出a的值,再根据方差公式代数计算即可.【详解】解:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,则这组数据的方差S2= [(3-4)2+(5-4)2+(5-4)2+(4-4)2+(3-4)2]=0.8,故答案为:0.8.【点睛】本题考查了方差,一般地设n个数据,x1x2,…xn的平均数为,则方差,此题难度不大.2、甲的平均成绩高,且甲的成绩较为稳定【分析】因为甲的平均数大于乙的平均数,再根据方差的意义可作出判断.【详解】=84, =83.2,=13.2, =26.36,
    ∴甲的平均成绩高,且甲的成绩较为稳定;
    故答案为:甲的平均成绩高,且甲的成绩较为稳定.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、4【分析】先将各数据划记到对应的小组,再正确数出第四组26.5~28.5的频数即可.【详解】解:这组数据中26.5<x<28.5的数据,即是数据27、28出现的次数,通过统计数据27、28共出现4次,故答案为:4.【点睛】本题考查频率、频数的概念,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.4、【分析】根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.【详解】解:∵数据abcde的方差是1.2,∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.故答案为:4.8.【点睛】本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.5、5    7    【分析】根据题意可以求出这组数据的极差,然后根据组距即可确定组数,再根据题目中的数据即可得到在24.5~26.5这一组的频数.【详解】解:由所给的数据可知,最大的数为30,最小的数为21,∴极差是:∵组距为2,应分为5组;∴在这一组的数据有:25、25、25、25、26、25、26、∴在这一组的频数是7.故答案为:5,7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,会求一组数据的极差和划分相应的组数.三、解答题1、(1)78,85;(2)九年级学生食品热量更高,理由见解析;(3)780人【分析】(1)根据八年级的数据求得A等级人数,判断出中位数位于B等级,可求得a的值,根据众数的意义以及九年级的数据求得b(2)比较平均数、中位数可得结论;(3)分别计算该校八、九年级学生的食品热量为A等级的百分比可得答案.【详解】解:(1)八年级学生食品的热量处于A等级人数20(人),∴八年级学生食品的热量的中位数位于B等级的第6、7两个数据,即77、79,a=九年级20名学生食品的热量出现最多是85,共有4次,a=85;故答案为:78,85;(2)九年级学生食品热量更高. 理由如下:由样本数据可得,八、九年级学生食品热量的平均数均为79,而八年级学生食品热量的中位数78,九年级学生食品热量的中位数79,79>78,所以九年级学生食品热量更高;(3)由样本数据可得,八年级学生的食品热量为A等级的有4人,占比九年级学生的食品热量为A等级的有6人,占比则两个年级共有( 人).【点睛】本题考查了中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.2、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)200;(2)50,图见解析;(3)90【分析】(1)根据综合实践活动的天数为4天的人数60人,所占比例为,即可求得总人数;(2)将总人数乘以实践活动的天数为5天的学生人数所占的比例即可求得, 活动时间为5天的学生人数,进而求得活动时间为7天的人数,即可补全统计图(3)分别求得活动时间为5,6,7天的人数,求其和即可【详解】解:(1)活动的天数为4天的人数60人,所占比例为则总人数为:60÷30%=200(人) (2)活动的天数为5天的有:200×(1-10%-15%-30%-5%-15%)=50(人) 活动的天数为7天的有:200×5%=10(人)补全5天和7天的两个直方条 (如图) (3) 50+30+200×5%=90(人) 该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是90人【点睛】本题考查了频数直方图和扇形统计图信息关联,从统计图中获取信息是解题的关键.4、(1)90,90;(2)小明平时成绩的方差;(3)小明本学期的综合成绩是93.5分.解题过程见解析.【分析】(1)根据众数和中位线的概念求解即可;(2)先求出平时成绩的平均数,然后根据方差的计算公式代入求解即可;(3)根据加权平均数的计算方法求解即可.【详解】解:(1)由表格可知,出现次数最多的90,∴小明6次成绩的众数是90分;把这6次成绩按从小到大排列为:86,88,90,90,92,96,∴中间两个数为90,90,∴中位数为:故答案为:90,90;(2)平均分小明平时成绩的方差(3)∴小明本学期的综合成绩是93.5分.【点睛】此题考查了平均数,中位数,众数,方差的计算等知识,解题的关键是熟练掌握平均数,中位数,众数,方差的计算方法.5、(1)见解析;(2)见解析【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下: 平均数众数中位数方差8880.48993.2故答案为:8,8,9; (2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量. 

    相关试卷

    北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共21页。试卷主要包含了在一次投篮训练中,甲等内容,欢迎下载使用。

    数学北京课改版第十七章 方差与频数分布综合与测试随堂练习题:

    这是一份数学北京课改版第十七章 方差与频数分布综合与测试随堂练习题,共21页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共20页。试卷主要包含了一组数据a-1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map