初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了方程的解是,一元二次方程根的情况是,方程x2﹣8x=5的根的情况是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )A. B. C. D.2、下列方程中是一元二次方程的是( )A.2x+1=0 B.y2+x=1 C.x2+1=0 D.3、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.4、方程的解是( )A.6 B.0 C.0或6 D.-6或05、若关于x的一元二次方程的一根为1,则k的值为( ) .A.1 B. C. D.06、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A.128(1 - x2)= 88 B.88(1 + x)2 = 128C.128(1 - 2x)= 88 D.128(1 - x)2 = 887、一元二次方程根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断8、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )A. B.C. D.9、方程x2﹣8x=5的根的情况是( )A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个实数根10、若a是方程的一个根,则的值为( )A.2020 B. C.2022 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、代数式的最小值是_______.2、已知关于的一元二次方程有一个根为1,一个根为,则_________,__________.3、骑行带头盔,安全有保障.“一盔一带”政策的推行致头盔销量大幅增长,从2019年到2021年我国头盔销售额从23.4亿元增长到39.546亿元,则我国头盔从2019年到2021年平均每年增长率是 _____.4、已知中,,,,则的面积是________.5、小华在解方程x2 = 3x时,只得出一个根x = 3,则被他漏掉的一个根是x =_______ 三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1); (2).2、如图,在正方形中,点分别在边、上,与相交于点G,且.(1)如图1,求证:;(2)如图2,与是方程的两个根,四边形的面积为,求正方形的面积.(3)在第(2)题的条件下,如图3,延长BC至点N,使得CN=3,连接GN交CD于点M,直接写出线段的值.3、 “惠民政策”陆续出台,老百姓得到实惠,某种心脏支架原价10000元一副,经过连续两次降价后,现在仅卖729元一副,求该种支架平均每次降价的百分率.4、已知关于x的方程x2 - 5x + m = 0(1)若方程有一根为 - 1,求m的值;(2)若方程无实数根,求m的取值范围5、在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在边AB上(不与点A,B重合),将△ANM绕点M逆时针旋转90°得到△BPM.问:△BPN的面积能否等于3,请说明理由. -参考答案-一、单选题1、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,∴,∴,即,故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.3、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.4、C【分析】根据一元二次方程的解法可直接进行求解.【详解】解:,解得:;故选C.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.5、B【分析】把方程的根代入方程可以求出k的值.【详解】解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键.6、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:128(1-x)2=88.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况.【详解】∵,,,∴,∴方程有有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.8、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为,根据题意,得,故选C.【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.9、A【分析】计算一元二次方程根的判别式求解即可.【详解】∵方程x2﹣8x=5,移项得:,,,,∴判别式,∴方程有两个不相等的实数根,故选:A.【点睛】此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.10、C【分析】先根据一元二次方程根的定义得到,再把变形为,然后利用整体代入的方法计算.【详解】解:是关于的方程的一个根,,,,.故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,利用整体代入的方法计算可简化计算.二、填空题1、【分析】利用配方法得到:.利用非负数的性质作答.【详解】解:因为≥0,所以当x=1时,代数式的最小值是,故答案是:.【点睛】本题主要考查了配方法的应用,非负数的性质.配方法的理论依据是公式a2±2ab+b2=(a±b)2.2、0 0 【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:,即;将﹣1代入方程得:,即;故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.3、30%【分析】设平均每年的增长率为x,则可得关于x的一元二次方程,解方程即可,但负根要舍去.【详解】设我国头盔从2019年到2021年平均每年的增长率为x,由题意得:即解得:,(舍去)∴,即我国头盔从2019年到2021年平均每年增长率是30%故答案为:30%.【点睛】本题考查了一元二次方程与增长率的问题,关键是理解题意,找到等量关系并列出方程.4、或【分析】如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.【详解】解:如图所示,过点C作CE⊥AB于E,∴∠CEB=∠CEA=90°,∵∠ABC=60°,∴∠BCE=30°,∴BC=2BE,∴,设,则,,∵,∴,解得或,∴或,∴或,故答案为:或.【点睛】本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.5、0【分析】根据因式分解法即可求出答案.【详解】解:∵x2=3x,
∴x2-3x=0,
∴,
∴x=0或x-3=0,
∴x1=0,x2=3,
故答案为:0.【点睛】本题考查解一元二次方程,解题的关键是熟练运用因式分解法.三、解答题1、(1),;(2)【分析】(1)先求解 再利用求根公式解方程即可;(2)先移项,把方程的右边化为0,再把方程的左边分解因式,化为两个一次方程,再解一次方程即可.【详解】解:(1) 即 (2) 或 解得:【点睛】本题考查的是公式法,因式分解法解一元二次方程,掌握“一元二次方程的求根公式”是解本题的关键.2、(1)见解析;(2)16;(3)【分析】(1)由正方形ABCD得,由得,从而得出即可得证;(2)由ASA证明,从而得出,设,,则,即,由根与系数的关系求出k,即可得出;(3)过点G作PQ⊥AD于点P,交BC于Q,则GQ⊥BC,由(2)可知,,,,由等面积法求出PG,由勾股定理求出AP,故可得QG、QN,由勾股定理即可求出答案.【详解】(1)∵四边形ABCD是正方形,∴,∵,∴,∴,∴;(2)∵四边形ABCD是正方形,∴,在与中,,,∴,设,,则,即,∵与是方程的两个根,∴,∴,解得:,,∴,∴,∴一元二次方程为,;(3)如图,过点G作PQ⊥AD于点P,交BC于Q,则GQ⊥BC,由(2)可知,,,,,,则,,,∴,.【点睛】本题考查正方形的性质,全等三角形的判定与性质,一元二次方程根与系数的关系以及勾股定理,掌握知识点间的相互应用是解题的关键.3、该种支架平均每次降价的百分率为73%.【分析】设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1﹣x),第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【详解】解:设该种支架平均每次降价的百分率为x,由题意得:10000(1﹣x)2=729,解得:x1=0.73,x2=1.27(不合题意舍去),∴x=0.73=73%,答:该种支架平均每次降价的百分率为73%.【点睛】此题主要考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4、(1)m的值为.(2)【分析】(1)将代入原方程,即可求出m的值.(2)令根的判别式,即可求出m的取值范围.【详解】(1)解:方程有一根为 - 1,是该方程的根,,解得:,故m的值为.(2)解:方程无实数根,解得:.【点睛】本题主要是考查了一元二次方程的根以及根的判别式,熟练利用根的判别式,求出对应无实数根的方程中的参数取值,这是解决该题的关键.5、△BPN的面积不能等于3,理由见解析【分析】如图,根据等腰直角三角形的性质和旋转性质得△BPM为△ANM绕点M逆时针旋转90°得到的,设AN=BP=x,则BN=4-x,连接NP,根据直角三角形的面积公式得到关于x的一元二次方程,然后求解即可得出结论.【详解】解:如图,∵在△ABC中,AB=BC,∠ABC=90°,M是AC的中点,∴AM=BM,BM⊥AC,∠A=∠MBC=45°,由旋转得∠NMP=90°,∴∠AMN+∠NMB=∠NMB+∠BMP,即∠AMN=∠BMP,∴△ANM≌△BPM(ASA),∴△BPM为△ANM绕点M逆时针旋转90°得到的,∴AN=BP,设AN=BP=x,则BN=4-x,连接NP,假设△BPN的面积能否等于3,则x(4-x)=3,∴x2-4x+6=0,∵△=42-4×1×6=-8<0,∴该方程无实数解,∴△BPN的面积不能等于3,【点睛】本题考查等腰三角形的性质、直角三角形斜边上的中线性质、旋转性质、全等三角形的判定与性质、等角的余角相等、三角形的面积公式、一元二次方程的应用,熟练掌握相关知识的联系与运用,证明△ANM≌△BPM是解答的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试测试题,共15页。试卷主要包含了一元二次方程的二次项系数,一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时练习,共17页。试卷主要包含了用配方法解方程,则方程可变形为,股市规定等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了一元二次方程根的情况是,下列事件为必然事件的是,股市规定,一元二次方程x2=-2x的解是等内容,欢迎下载使用。