初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题
展开京改版八年级数学下册第十六章一元二次方程专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一元二次方程的解是( ).
A.5 B.-2 C.-5或2 D.5或-2
2、一元二次方程的两个根是 ( )
A., B., C., D.,
3、一元二次方程根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
4、方程x2=4x的解是( )
A.x=4 B.x=2 C.x=4或x=0 D.x=0
5、方程x2﹣8x=5的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个实数根
6、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
A. B. C. D.
7、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )
A.20% B.30% C.40% D.50%
8、已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是( )
A.5 B.3 C.-3 D.-4
9、用配方法解方程x2+4x=1,变形后结果正确的是( )
A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=2
10、用配方法解方程x2+2x=1,变形后的结果正确的是( )
A.(x+1)2=-1 B.(x+1)2=0 C.(x+1)2=1 D.(x+1)2=2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把化一般形式为________,二次项系数为________,一次项系数为______,常数项为_______.
2、已知关于x方程的一个根是1,则m的值等于______.
3、设x1,x2是关于x的一元二次方程x2﹣mx+2m=0的两个根,当x1为1时则x1x2的值是________.
4、若关于x的一元二次方程的一个根是m,则的值为______.
5、某班学生去参加义务劳动,其中一组到一果园去摘梨子, 第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,…以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为 _______
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1)x2+8x-2=0;
(2)2(2x+3)2-(2x+3)-1=0.
2、已知关于的一元二次方程.
(1)求证:此方程总有两个实数根;
(2)若此方程恰有一个根小于,求的取值范围.
3、设,是关于的一元二次方程的两个实数根.
(1)求的取值范围;
(2)若,求的值.
4、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)
5、解方程:
(1)
(2)
-参考答案-
一、单选题
1、D
【分析】
直接把原方程化为两个一次方程或,再解一次方程即可.
【详解】
解:
或
解得:
故选D
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“因式分解法解一元二次方程的步骤”是解本题的关键.
2、C
【分析】
分别令和,即可求出该方程的两个根.
【详解】
解:由可知:或,
方程的解为:,
故选:C.
【点睛】
本题主要是考查了一元二次方程的求解,一定要熟练掌握两项乘积为的一元二次方程的求解:令每一项都为0,即可求出该方程的两个根.
3、A
【分析】
计算出判别式的值,根据判别式的值即可判断方程的根的情况.
【详解】
∵,,,
∴,
∴方程有有两个不相等的实数根.
故选:A
【点睛】
本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.
4、C
【分析】
本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.
【详解】
解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,
∴x=0或x=4
故选:C.
【点睛】
本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.
5、A
【分析】
计算一元二次方程根的判别式求解即可.
【详解】
∵方程x2﹣8x=5,
移项得:,
,,,
∴判别式,
∴方程有两个不相等的实数根,
故选:A.
【点睛】
此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
6、B
【分析】
先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.
【详解】
解:根据题意,∵,
∴,
∴,
∴
;
∵,
解得:,,
∵,
∴,
∴;
故选:B
【点睛】
本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.
7、C
【分析】
先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.
【详解】
解:设全市5G用户数年平均增长率为x,
根据题意,得: ,
整理得:,
∴,
解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).
故选:C.
【点睛】
本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
8、A
【分析】
根据一元二次方程根与系数的关系先求出m+n和mn的值,然后代入计算即可.
【详解】
解:∵一元二次方程的两根分别为m,n,
∴,,
∴,
故选:A.
【点睛】
本题考查一元二次方程根与系数的关系,对于一元二次方程,若其两根分别为和,则其两个根满足,,掌握此定理是解题关键.
9、A
【分析】
方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.
【详解】
解:x2+4x=1
即
故选A
【点睛】
本题考查了配方法解一元二次方程,掌握配方法是解题的关键.
10、D
【分析】
方程两边同时加上一次项系数一半的平方即可得到答案.
【详解】
解:∵x2+2x=1,
∴x2+2x+1=1+1,
∴(x+1)2=2,
故选D.
【点睛】
本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.
二、填空题
1、2x2-6x-1=0 2 -6 -1
【分析】
先将方程移项化为一般形式,即可求解.
【详解】
解:将方程化成一般形式为,
∴二次项系数为2,一次项系数为-6,常数项为-1.
故答案为:①,②2,③-6,④-1.
【点睛】
本题主要考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.
2、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
3、-2
【分析】
把代入,得,所以方程为,即可求解.
【详解】
解:把代入,得:
解得:,
∴方程为,
∴x1x2==-2.
故答案为:-2
【点睛】
本题主要考查了一元二次方程的根与系数的关系,熟练掌握若,是一元二次方程 的两个实数根,则,是解题的关键.
4、-2011
【分析】
由关于x的一元二次方程的一个根是m,可得,再由求解即可.
【详解】
解:∵关于x的一元二次方程的一个根是m,
∴,
∴,
∴.
故答案为:-2011.
【点睛】
本题考查一元二次方程的解和代数式求值,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.
5、11
【分析】
设这组学生的人数为 人,根据题意列出方程,解出即可.
【详解】
解:设这组学生的人数为 人,根据题意得:
,
即
解得: .
故答案为:11
【点睛】
本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.
三、解答题
1、(1)x1=-4+3,x2=-4-3;(2)x1=-1,x2=.
【分析】
(1)通过移项配方,求出方程的解即可;
(2)分解因式,即可得出两个一元一次方程,求出方程的解即可;
【详解】
解:(1)x2+8x-2=0,
移项得:x2+8x=2,
配方得:x2+8x+16=2+16,即 (x+4)2=18,
∴x1=-4+3,x2=-4-3;
(2)2(2x+3)2-(2x+3)-1=0
因式分解得:[(2x+3)-1][2(2x+3)+1]=0,
即:(2x+2)(4x+7)=0,
∴x1=-1,x2=.
【点睛】
本题考查了解一元二次方程,掌握因式分解法以及配方法解方程是解题的关键.
2、(1)见详解;(2)k<-4
【分析】
(1)根据方程的系数结合根的判别式,可得Δ≥0,由此可证出方程总有两个实数根;
(2)利用分解因式法解一元二次方程,可得出x1=2、x2= k+3,根据方程有一根小于-1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
(1)证明:∵在方程中,Δ=[-(k+5)]2-4×1×(6+2k)=k2+2k+1=(k+1)2≥0,
∴方程总有两个实数根.
(2)解:∵,
∴x1=2,x2=k+3.
∵此方程恰有一个根小于,
∴k+3<-1,解得:k<-4,
∴k的取值范围为k<-4.
【点睛】
本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于-1,找出关于k的一元一次不等式.
3、(1);(2)
【分析】
(1)由方程有两个实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;
(2)根据根与系数的关系即可得出,,结合m的取值范围即可得出,,再由即可得出,解之即可得出m的值.
【详解】
(1)依题意可知:,即,
解得:;
(2)依题意可知:,,
∵,
∴,,
∴,,
∵,
∴,
∴,
解得:或,
∵,
∴.
【点睛】
本题考查了根与系数的关系,根的判别式,解题的关键是掌握根与系数的关系,根的判别式的使用方法.
4、(1),;(2),.
【分析】
(1)根据因式分解法解方程即可得;
(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.
【详解】
解:(1),
,
∴或,
解得:,;
(2),
,
,
∴或,
解得:,.
【点睛】
题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.
5、(1)原方程无解;(2).
【分析】
(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;
(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.
【详解】
解:(1),
方程两边同乘以,得,
移项、合并同类项,得,
系数化为1,得,
经检验,不是分式方程的解,
所以原方程无解;
(2),
方程两边同乘以,得,
移项、合并同类项,得,
因式分解,得,
解得或,
经检验,不是分式方程的解;是分式方程的解,
所以原方程的解为.
【点睛】
本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.
北京课改版第十六章 一元二次方程综合与测试一课一练: 这是一份北京课改版第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了若方程的一个根为,则的值是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共16页。
北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共18页。试卷主要包含了方程的解是等内容,欢迎下载使用。