初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共17页。试卷主要包含了已知关于x的一元二次方程x2﹣,方程x2﹣8x=5的根的情况是,方程x2=4x的解是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为步,根据题意可以列方程为( )A. B. C. D.2、方程x2﹣x=0的解是( )A.x=0 B.x=1 C.x1=0,x2=﹣1 D.x1=0,x2=13、已知方程的两根分别为m、n,则的值为( )A.1 B. C.2021 D.4、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:①当a<0,且b>a+c时,方程一定有实数根;②若ac<0,则方程有两个不相等的实数根;③若a-b+c=0,则方程一定有一个根为-1;④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.其中正确的有( )A.①②③ B.①②④ C.②③ D.①②③④5、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3, D.x1=2,x2=-16、已知关于x的一元二次方程x2﹣(2m+3)x+m2=0有两根α,β.若=1,则m的值为( )A.3 B.﹣1 C.3或﹣1 D.7、方程x2﹣8x=5的根的情况是( )A.有两个不相等的实数根 B.没有实数根C.有两个相等的实数根 D.有一个实数根8、方程x2=4x的解是( )A.x=4 B.x=2 C.x=4或x=0 D.x=09、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.10、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为_______.2、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.3、若关于x的一元二次方程ax2+bx+2=0(a≠0)的一个解是x=1,则a+b的值为 _____.4、方程7x2﹣6x﹣5=0的解为 ______________.5、将化为一般形式为________.三、解答题(5小题,每小题10分,共计50分)1、解方程:.2、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.(1)要使这两个正方形的面积之和为,小林该如何剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.3、随着元旦的到来,某超市准备在元旦期间推出甲、乙两种商品,甲型的售价是乙型的.(1)元旦第一周该商家两种商品的总销售额为3600元,乙商品的销售额是甲商品的2倍,销售量比甲商品多40件,求甲商品销售了多少件?(2)为增加销量,该商家第二周决定将乙商品的售价下调%,甲商品的售价保持不变,结果与第一周相比,乙商品的销量增加了%,甲商品的销量增加了a%,最终第二周的销售额比第一周的销售额增加了%,求a的值.4、阅读与思考配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.例如: (1)解决问题:运用配方法将下列多项式进行因式分解①;②(2)深入研究:说明多项式的值总是一个正数?(3)拓展运用:已知a、b、c分别是的三边,且,试判断的形状,并说明理由.5、(1)用配方法解方程:.(2)当岚岚用因式分解法解一元二次方程时,她是这样做的:解:原方程可以化简为.……………………………………第一步两边同时除以.得. ………………………………………………第二步系数化为1,得.………………………………………………………………第三步①岚岚的解法是不正确的,她从第________步开始出现了错误.②请完成这个方程的正确解题过程. -参考答案-一、单选题1、C【分析】设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【详解】设长为x步,则宽为(60-x)步,
依题意得:x(60-x)=864,整理得:.
故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、D【分析】因式分解后求解即可.【详解】x2﹣x=0,x(x-1)=0,x=0,或x-1=0,解得x1=0,x2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.3、B【分析】由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.【详解】∵方程x2﹣2021x+1=0的两根分别为m,n,∴mn=1,m2﹣2021m+1=0,∴m2﹣2021m=﹣1,∴m2﹣=﹣1,故选:B.【点睛】本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.4、C【分析】①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.【详解】①由当,,,,方程此时没有实数根,故①错误;②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;③令得,则方程一定有一个根为;③正确;④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.故选:C.【点睛】本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.5、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,∴,,∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,∴,∴,∴或,解得:.故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.6、A【分析】先利用根的判别式得到m≥,再根据根与系数的关系得α+β=2m+3,αβ=m2,则2m+3=m2,然后解关于m的方程,最后利用m的范围确定m的值.【详解】解:根据题意得Δ=(2m+3)2﹣4m2≥0,解得m≥,根据根与系数的关系得α+β=2m+3,αβ=m2,∵=1,∴α+β=αβ,即2m+3=m2,整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,∵m≥,∴m的值为3.故选:A.【点睛】本题考查的是一元二次方程根的判别式,根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,,是解答此题的关键.7、A【分析】计算一元二次方程根的判别式求解即可.【详解】∵方程x2﹣8x=5,移项得:,,,,∴判别式,∴方程有两个不相等的实数根,故选:A.【点睛】此题考查了一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.8、C【分析】本题可先进行移项得到:x2﹣4x=0,然后提取出公因式x,两式相乘为0,则这两个单项式必有一项为0.【详解】解:原方程可化为:x2﹣4x=0,提取公因式:x(x﹣4)=0,∴x=0或x=4故选:C.【点睛】本题主要考查了一元二次方程的计算,准确分析计算是解题的关键.9、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.10、C【分析】根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.【详解】解:根据题意,得:,故选:C.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.二、填空题1、(62﹣x)(42﹣x)=2400.【分析】设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据草坪的面积为2400平方米,即可得出关于x的一元二次方程,此题得解.【详解】解:设道路的宽为x米,则种植草坪的部分可合成长(62﹣x)米,宽为(42﹣x)米的矩形,根据题意得(62﹣x)(42﹣x)=2400.故答案为:(62﹣x)(42﹣x)=2400.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解: 则或或 解得: 故答案为:【点睛】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.3、-2【分析】根据一元二次方程解得定义把代入到进行求解即可.【详解】解:∵关于x的一元二次方程的一个解是,∴,∴,故答案为:-2.【点睛】本题主要考查了一元二次方程解得定义,代数式求值,熟知一元二次方程解的定义是解题的关键.4、【分析】找出a,b,c的值,代入求根公式即可求出解.【详解】解:7x2﹣6x﹣5=0∵a=7,b=﹣6,c=﹣5,∵△=36﹣4×7×(﹣5)=176>0,∴ ,∴x1=,x2=.【点睛】本题考查一元二次方程的解法,常用的解法有:直接开方法,配方法,公式法,因式分解法,做题的关键是根据题目选择合适的方法.5、【分析】移项,将方程右边化为0【详解】解:化为一般形式为故答案为:.【点睛】本题考查一元二次方程的定义,属于基础题,一元二次方程的一般式:.三、解答题1、,【分析】确定,,,采用求根公式法解答即可.【详解】∵,∴,,,△,则,,.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题的关键.2、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析【分析】(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.【详解】解:设剪成的两段分别为,.(1)根据题意,得,解得,.当时,;当时,.∴剪成的两段分别为12cm,28cm.(2)根据题意,得,整理,得.∵,∴该方程无解,∴小峰的说法正确.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.3、(1)80件;(2)40【分析】(1)先求得第一周甲乙商品的销售额,设甲商品销售了x件,则乙商品销售了件,根据题意列方程求解即可;(2)先求得第一周甲乙商品的销售单价,根据题意列方程求解即可.【详解】解:(1)第一周甲商品的销售额为(元),第一周乙商品的销售额为(元).设甲商品销售了x件,则乙商品销售了件,依题意,得:,解得:,经检验,是原方程的解,且符合题意.答:甲商品销售了80件.(2)第一周甲商品的销售单价为(元),第一周乙商品的销售单价为(元).依题意,得:整理,得:,解得:,(不合题意,舍去).答:a的值为40.【点睛】本题考查分式方程及一元二次方程的应用,解题关键是找准等量关系,正确列出方程.4、(1)①;②;(2)见解析;(3)等边三角形,理由见解析【分析】(1)仿照例子运用配方法进行因式分解即可;(2)利用配方法和非负数的性质进行说明即可;(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可.【详解】解:(1)①.②(2)∵∴∴多项式的值总是一个正数.(3)为等边三角形.理由如下:∵∴∴∴,∴∴为等边三角形.【点睛】本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.5、(1),;(2)①二;②,【详解】解:(1)配方,得,即.由此可得.解得,.(2)①第二步在两边同时除以时未考虑的情况,故第二步错误.故答案为:二;②正确的解答过程如下:原方程可以化简为.移项,得.因式分解,得.由此可得或.解得,.【点睛】本题考查解一元二次方程,熟练掌握该知识点是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共15页。试卷主要包含了已知关于x的一元二次方程等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共15页。试卷主要包含了下列命题中,逆命题不正确的是,已知方程的两根分别为m,方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了一元二次方程的解为,若a是方程的一个根,则的值为,下列事件为必然事件的是等内容,欢迎下载使用。