初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共17页。试卷主要包含了一元二次方程x2=-2x的解是,小亮等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,则一元二次方程ax2-bx+c=3的两根分别为( )A.x1=0,x2=-3 B.x1=-1,x2=-4C.x1=0,x2=3, D.x1=2,x2=-12、某地区计划举行校际篮球友谊赛,赛制为主客场形式(每两队之间在主客场各比赛一场),已知共比赛了30场次,则共有( )支队伍参赛.A.4 B.5 C.6 D.73、生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为,那么根据题意可以列方程为( )A. B.C. D.4、某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A.128(1 - x2)= 88 B.88(1 + x)2 = 128C.128(1 - 2x)= 88 D.128(1 - x)2 = 885、矩形ABCD的一条对角线长为6,边AB的长是方程的一个根,则矩形ABCD的面积为( )A. B.12 C. D.或6、已知一个直角三角形的两边长是方程的两个根,则这个直角三角形的斜边长为( )A.3 B. C.3或 D.5或7、一元二次方程x2=-2x的解是( )A.x1=x2=0 B.x1=x2=2 C.x1=0,x2=2 D.x1=0,x2=-28、小亮、小明、小刚三名同学中,小亮的年龄比小明的年龄小2岁,小刚的年龄比小明的年龄大1岁,并且小亮与小刚的年龄的乘积是130.你知道这三名同学的年龄各是多少岁吗?设小明的年龄为x岁,则可列方程为( )A. B.C. D.9、已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是( )A.﹣2 B.2 C.﹣1 D.110、下列方程中一定是一元二次方程的是( )A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一块长5m、宽4m的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.设配色条纹的宽度为xm,根据题意,列方程为 _____.
2、若关于的一元二次方程有一个根为0,则________.3、如图,一长为32m、宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化.若已知绿化面积为540㎡,则道路的宽为__________m.4、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _____.5、方程7x2﹣6x﹣5=0的解为 ______________.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)x(x﹣2)=x﹣2(2)x2﹣6x﹣1=0.2、解下列方程:(1)(2x-1)2 = x2;(2)(x+1)(x+3)=-1.3、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.(1)要使这两个正方形的面积之和为,小林该如何剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.4、解下列方程:(1)x2﹣2x=0;(2)x2+4x﹣8=0.5、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法) -参考答案-一、单选题1、D【分析】首先根据a+b+c=3可得一元二次方程ax2+bx+c=3的一个根为,然后根据根与系数的关系可得,,然后代入一元二次方程ax2-bx+c=3中即可求解.【详解】解:∵一元二次方程ax2+bx+c=3有一个根为x=-2,且a+b+c=3,∴一元二次方程ax2+bx+c=3有一个根为1,∴一元二次方程ax2+bx+c=3化成一般形式为ax2+bx+c-3=0,∴,,∵ax2-bx+c=3化成一般形式为ax2-bx+c-3=0,即,∴,∴,∴或,解得:.故选:D.【点睛】此题考查了一元二次方程的解,因式分解法解一元二次方程,一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系.2、C【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:球队的个数×(球队的个数1)=30,把相关数值代入计算即可.【详解】解:有x个球队参加比赛,根据题意可列方程为:x(x1)=30,解得:或(舍去);∴共有6支队伍参赛;故选:C【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.3、C【分析】设这两年全国生活垃圾无害化处理能力的年平均增长率为,根据等量关系,列出方程即可.【详解】解:设这两年全国生活垃圾无害化处理能力的年平均增长率为,由题意得:,故选C.【点睛】本题主要考查一元二次方程的实际应用,掌握增长率模型,是解题的关键.4、D【分析】根据该药品的原售价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:依题意得:128(1-x)2=88.
故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、D【分析】先求的两个根再根据矩形的性质,用勾股定理求得另一边长或,计算面积即可.【详解】∵,∴(x-2)(x-5)=0,∴∴另一边长为=或=,∴矩形的面积为2×=或5×=5,故选D.【点睛】本题考查了矩形的性质,勾股定理,一元二次方程的解法,熟练解方程,灵活用勾股定理是解题的关键.6、D【分析】利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案.【详解】解:,因式分解得:,解得:,,情况1:当为斜边的长时,此时斜边长为5,情况2:当,,都为直角边长时,此时斜边长为,这个直角三角形的斜边长为5或,故选:D.【点睛】本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解.7、D【分析】先移项、然后再利用因式分解法解方程即可.【详解】解 :x2=-2xx2+2x=0x(x+2)=0,x=0或x+2=0,所以x1=0,x2=-2.故选:D.【点睛】本题考查了解一元二次方程−因式分解法,把解一元二次方程的问题转化为解一元一次方程的问题成为解答本题的关键.8、B【分析】设小明的年龄为x岁,则可用x表示出小亮的年龄和小刚的年龄.再根据小亮与小刚的年龄的乘积是130,即可列出方程.【详解】设小明的年龄为x岁,则小亮的年龄为岁,小刚的年龄为岁,根据题意即可列方程:.故选:B.【点睛】本题考查一元二次方程的实际应用.理解题意,正确找出题干中的数量关系列出等式是解答本题的关键.9、D【分析】用根与系数的关系可用k表示出已知等式,可求得k的值.【详解】解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,故选:D.【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.10、A【分析】利用一元二次方程定义进行解答即可.【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.二、填空题1、2x2-9x+4=0【分析】设条纹的宽度为x米,根据“配色条纹所占面积=整个地毯面积的”的等量关系列出方程并整理即可.【详解】解:设条纹的宽度为x米.依题意得:2x×5+2x×4−4x2=×5×4整理得:2x2-9x+4=0.故填2x2-9x+4=0.【点睛】本题主要考查了列一元二次方程,审清题意、找到等量关系成为解答本题的关键.2、1或-1或1【分析】将x=1代入方程求解即可.【详解】解:将x=1代入方程得到解得m=1或-1故答案为:1或-1.【点睛】此题考查了一元二次方程的解,已知方程的解时应将解代入方程求某字母系数的值.3、2【分析】把四块耕地拼到一起正好构成一个矩形,矩形的长和宽分别是(32-x)m和(20-x)m,根据矩形的面积公式,列出关于道路宽的方程求解.【详解】解:设道路的宽是xm,(32−x)(20−x)=540,整理得,因式分解得,解得:x1=2,x2=50(舍),答:道路的宽是2m.故答案为2.【点睛】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.4、100(1+x)2=144.【分析】设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可.【详解】解:设该公司二、三月销量的月平均增长率为x,则可列方程为100(1+x)2=100+44,即100(1+x)2=144,故答案为:100(1+x)2=144.【点睛】本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键.5、【分析】找出a,b,c的值,代入求根公式即可求出解.【详解】解:7x2﹣6x﹣5=0∵a=7,b=﹣6,c=﹣5,∵△=36﹣4×7×(﹣5)=176>0,∴ ,∴x1=,x2=.【点睛】本题考查一元二次方程的解法,常用的解法有:直接开方法,配方法,公式法,因式分解法,做题的关键是根据题目选择合适的方法.三、解答题1、(1)x1=2,x2=1;(2)x1=3+,x2=3﹣【分析】(1)利用因式分解的方法解一元二次方程即可;(2)利用配方法解一元二次方程即可.【详解】解:(1)∵,∴,∴,∴,;(2)∵,∴,∴,∴,∴,∴,.【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.2、(1);(2).【分析】(1)先移项,再用因式分解法即可求解;(2)先整理为一般形式,对方程左边分解因式,即可求解.【详解】解:(1)(2x-1)2 = x2移项得,因式分解得,∴或,∴;(2)(x+1)(x+3)=-1原方程整理得,∴,∴.【点睛】本题考查了一元二次方程的解法,熟知一元二次方程的解法并根据方程特点灵活选择是解题关键,注意第(2)题有两个相等的实数根,不要漏写.3、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析【分析】(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.【详解】解:设剪成的两段分别为,.(1)根据题意,得,解得,.当时,;当时,.∴剪成的两段分别为12cm,28cm.(2)根据题意,得,整理,得.∵,∴该方程无解,∴小峰的说法正确.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.4、(1);(2).【分析】(1)利用因式分解法解一元二次方程即可得;(2)利用公式法解一元二次方程即可得.【详解】解:(1),,或,;(2),此方程中的,则,即,所以.【点睛】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.5、(1),;(2),.【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.【详解】解:(1),,∴或,解得:,;(2),,,∴或,解得:,.【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共14页。试卷主要包含了下列命题中,逆命题不正确的是,一元二次方程的二次项系数等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后复习题,共18页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共22页。试卷主要包含了小亮,一元二次方程的解是等内容,欢迎下载使用。