初中北京课改版第十六章 一元二次方程综合与测试练习
展开
这是一份初中北京课改版第十六章 一元二次方程综合与测试练习,共16页。试卷主要包含了一元二次方程的两个根是,下列命题中,逆命题不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.112、在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( )A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=03、用配方法解方程x2-4x-3=0时,配方后的方程为( )A.(x+2)2=1 B.(x-2)2=1 C.(x+2)2=7 D.(x-2)2=74、用配方法解方程x2+4x=1,变形后结果正确的是( )A.(x+2)2=5 B.(x+2)2=2 C.(x-2)2=5 D.(x-2)2=25、一元二次方程的两个根是 ( )A., B., C., D.,6、已知m,n是一元二次方程的两个实数根,则的值为( ).A.4 B.3 C. D.7、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是( )A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠08、若一元二次方程有一个根为1,则下列等式成立的是( )A. B. C. D.9、下列命题中,逆命题不正确的是( )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方10、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面是用配方法解关于的一元二次方程的具体过程,解:第一步:第二步:第三步:第四步:,以下四条语句与上面四步对应:“①移项:方程左边为二次项和一次项,右边为常数项;②求解:用直接开方法解一元二次方程;③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;④二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.2、一元二次方程的二次项系数、一次项系数及常数项之和为 ______.3、关于的一元二次方程的一个根是,则方程的另一根是_______.4、已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=___.5、已知关于的一元二次方程有一个根为1,一个根为,则_________,__________.三、解答题(5小题,每小题10分,共计50分)1、国家鼓励大学生自主创业,并有相关的支持政策,受益于支持政策的影响,某大学生自主创立的公司利润逐年提高,据统计,2017年利润为200万元,2019年利润为288万元,求该公司从2017年到2019年利润的年平均增长率.2、已知关于x的一元二次方程有两个实数根,.(1)若,求k的值.(2)若,,求k的取值范围.3、某地区2019年投入教育经费2500万元,2021年投入教育经费3025万元.求2019年至2021年该地区投入教育经费的年平均增长率.4、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若,且此方程的两个实数根的差为3,求的值.5、(1)用配方法解方程:.(2)当岚岚用因式分解法解一元二次方程时,她是这样做的:解:原方程可以化简为.……………………………………第一步两边同时除以.得. ………………………………………………第二步系数化为1,得.………………………………………………………………第三步①岚岚的解法是不正确的,她从第________步开始出现了错误.②请完成这个方程的正确解题过程. -参考答案-一、单选题1、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.2、B【分析】先用表示出矩形挂图的长和宽,利用面积公式,即可得到关于的方程.【详解】解:由题意可知:挂图的长为,宽为,, 化简得:x2+65x﹣350=0,故选:B.【点睛】本题主要是考查了一元二次方程的实际应用,熟练根据等式列出对应的方程,是解决该类问题的关键.3、D【分析】根据配方法转化为的形式,问题得解.【详解】解:x2-4x-3=0,移项得,配方得,∴.故选:D【点睛】本题考查了配方法解一元二次方程,熟知配方法的步骤并准确配方(在二次项系数为1时,方程两边同时加上一次项系数一半的平方)是解题的关键.4、A【分析】方程的两边同时加上一次项系数一半的平方即可,进而即求得答案.【详解】解:x2+4x=1即故选A【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.5、C【分析】分别令和,即可求出该方程的两个根.【详解】解:由可知:或,方程的解为:,故选:C.【点睛】本题主要是考查了一元二次方程的求解,一定要熟练掌握两项乘积为的一元二次方程的求解:令每一项都为0,即可求出该方程的两个根.6、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解.【详解】解:∵m、n是一元二次方程的两个实数根,∴m+n=4.故选:A.【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.7、B【分析】根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.【详解】解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;②当时,此方程是一元二次方程,可得k≠0且Δ=(-4)2-4 k×(-2)≥0,解得k≥-2且k≠0.综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,故选:B.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.8、D【分析】将代入方程即可得出答案.【详解】解:由题意,将代入方程得:,故选:D.【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键.9、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.10、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.二、填空题1、④①③②【分析】根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.【详解】解:根据配方法的步骤可知:第一步为:④二次项系数化1,方程两边都除以二次项系数;第二步为:①移项:方程左边为二次项和一次项,右边为常数项;第三步为:③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;第四步为:②求解:用直接开方法解一元二次方程;故答案为:④①③②.【点睛】本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.2、6
【分析】确定二次项系数,一次项系数,常数项以后即可求解.【详解】根据题意可得,一元二次方程的二次项系数为1,一次项系数为4,常数项为1;∴和为.故答案为:6.【点睛】本题考查了一元二次方程的一般形式,利用二次项系数、一次项系数、常数项之和算出算式是解题关键.3、【分析】设另一根为,根据一元二次方程根与系数的关系,可得 ,由,解一元一次方程即可求得方程的另一根【详解】解:∵关于的一元二次方程的一个根是,设另一根为,∴故答案为:【点睛】本题考查了一元二次方程根与系数的关系,掌握是解题的关键.4、−1【分析】根据一元二次方程的解把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.【详解】解:把x=0代入(a−1)x2−2x+a2−1=0得a2−1=0,解得a=±1,
∵a−1≠0,
∴a=−1.
故答案为:−1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.5、0 0 【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:,即;将﹣1代入方程得:,即;故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.三、解答题1、该公司从2017年到2019年利润的年平均增长率为20%【分析】设该公司从2017年到2019年利润的年平均增长率为x,然后根据2017年利润为200万元,2019年利润为288万元,列出方程求解即可.【详解】解:设该公司从2017年到2019年利润的年平均增长率为x,由题意得:,解得,∴该公司从2017年到2019年利润的年平均增长率为20%,答:该公司从2017年到2019年利润的年平均增长率为20%.【点睛】本题主要考查了一元二次方程的应用,解题的关键在于能够根据题意列出方程求解.2、(1)或;(2)【分析】(1)根据方程的特点,因式分解法解方程,进而求得的值;(2)根据方程的解,以及,,即可求得k的取值范围.【详解】解:有实根(1)即解得即或解得或(2)若,,则解得【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键.3、这两年投入教育经费的年平均增长率为【分析】根据等量关系:2019年投入教育经费×(1+x)2=2021年投入教育经费列方程求解即可.【详解】解:设2019年至2021年该地区投入教育经费的年平均增长率为,根据题意,得,解得:,或(不合题意舍去),答:这两年投入教育经费的年平均增长率为.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.4、(1)见解析;(2)【分析】(1)证明一元二次方程的判别式大于等于零即可;(2)用m表示出方程的两个根,比较大小后,作差计算即可.【详解】(1)证明:∵一元二次方程,∴==. ∵,∴.∴ 该方程总有两个实数根. (2)解:∵一元二次方程,解方程,得,. ∵ ,∴ .∵该方程的两个实数根的差为3,∴ .∴.【点睛】本题考查了一元二次方程根的判别式,方程的解法,熟练掌握判别式,并灵活运用实数的非负性是解题的关键.5、(1),;(2)①二;②,【详解】解:(1)配方,得,即.由此可得.解得,.(2)①第二步在两边同时除以时未考虑的情况,故第二步错误.故答案为:二;②正确的解答过程如下:原方程可以化简为.移项,得.因式分解,得.由此可得或.解得,.【点睛】本题考查解一元二次方程,熟练掌握该知识点是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试一课一练,共16页。试卷主要包含了一元二次方程x2﹣x=0的解是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共16页。试卷主要包含了已知方程的两根分别为m,一元二次方程的解为,一元二次方程的根的情况是,方程的解是等内容,欢迎下载使用。
这是一份数学八年级下册第十六章 一元二次方程综合与测试测试题,共16页。试卷主要包含了一元二次方程的解为,若a是方程的一个根,则的值为,下列事件为必然事件的是等内容,欢迎下载使用。