初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题
展开京改版八年级数学下册第十六章一元二次方程同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、不解方程,判别方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
2、若一元二次方程ax2+bx+c=0的系数满足ac<0,则方程根的情况是( )
A.没有实数根 B.有两个不相等的实数根
C.有两个相等的实数根 D.无法判断
3、若关于x的方程kx2﹣4x﹣2=0有实数根,则实数k的取值范围是( )
A.k≥2 B.k≥﹣2 C.k>﹣2且k≠0 D.k≥﹣2且k≠0
4、已知是一元二次方程的一个根,则代数式的值为( )
A.2020 B.2021 C.2022 D.2023
5、方程的解是( )
A.6 B.0 C.0或6 D.-6或0
6、对于一元二次方程ax2+bx+c=0(a≠0),有下列说法:
①当a<0,且b>a+c时,方程一定有实数根;
②若ac<0,则方程有两个不相等的实数根;
③若a-b+c=0,则方程一定有一个根为-1;
④若方程有两个不相等的实数根,则方程bx2+ax+c=0一定有两个不相等的实数根.
其中正确的有( )
A.①②③ B.①②④ C.②③ D.①②③④
7、已知方程的两根分别为m、n,则的值为( )
A.1 B. C.2021 D.
8、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为( )
A. B. C. D.
9、某中学组织九年级学生篮球比赛,以班为单位,每两班之间都比赛一场,总共安排15场比赛,则共有多少个班级参赛( )
A.6 B.5 C.4 D.3
10、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于x的方程有两个不相等的实数根,则m的取值范围是______.
2、已知关于x的一元二次方程3x2+4x+m=0有实数根,则m的取值范围是_______.
3、已知关于x方程的一个根是1,则m的值等于______.
4、已知关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,则k的取值范围是 _____.
5、已知中,,,,则的面积是________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程:
(1)
(2)
2、(1)计算:
(2)计算:
(3)解方程:
(4)解方程:
3、用配方法解方程3﹣6x+1=0.
4、某公司自主研发一款健康的产品———燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.
(1)求该饮品的售价;
(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.
5、如图,是边长为的等边三角形,点P,Q分别从顶点A,B同时出发,点P沿射线运动,点Q沿折线运动,且它们的速度都为.当点Q到达点A时,点P随之停止运动连接,,设点P的运动时间为.
(1)当点Q在线段上运动时,的长为_______(),的长为_______()(用含t的式子表示);
(2)当与的一条边垂直时,求t的值;
(3)在运动过程中,当是等腰三角形时,直接写出t的值.
-参考答案-
一、单选题
1、A
【分析】
利用根的判别式进行求解并判断即可.
【详解】
解:原方程中,,,,
,
原方程有两个不相等的实数根
故选:A.
【点睛】
熟练掌握根的判别式是解答此题的关键,当>0有两不相等实数根,当=0有两相等实数根,当<0没有实数根.
2、B
【分析】
判别式Δ=b2﹣4ac,由于ac<0,则﹣ac>0,而b2≥0,于是可判断Δ>0,然后根据判别式的意义判断根的情况.
【详解】
解:∵关于x的一元二次方程为ax2+bx+c=0,
∴Δ=b2﹣4ac,
∵ac<0,
∴﹣ac>0,
又∵b2≥0,
∴Δ>0,
∴方程有两个不相等的实数根.
故选B.
【点睛】
本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式△的关系:(1)Δ>0,方程有两个不相等的实数根;(2)Δ=0,方程有两个相等的实数根;(3) Δ<0,方程没有实数根.
3、B
【分析】
根据当时,方程是一元一次方程有实数根,当时,根据一元二次方程的定义和根的判别式的意义得到k≠0且Δ=(-4)2-4 k×(-2)≥0,然后求出两不等式组的公共部分,两种情况合并即可.
【详解】
解:根据题意得:①当时,方程是一元一次方程,此时﹣4x﹣2=0,方程有实数解;
②当时,此方程是一元二次方程,可得
k≠0且Δ=(-4)2-4 k×(-2)≥0,
解得k≥-2且k≠0.
综上,当时,关于x的方程kx2﹣4x﹣2=0有实数根,
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.
4、B
【分析】
把代入一元二次方程得到,再利用整体代入法解题即可.
【详解】
解:把代入一元二次方程得,
,
,
故选:B.
【点睛】
本题考查一元二次方程的解、已知式子的值求代数式的值、整体思想等知识,是重要考点,难度较易,掌握相关知识是解题关键.
5、C
【分析】
根据一元二次方程的解法可直接进行求解.
【详解】
解:
,
解得:;
故选C.
【点睛】
本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.
6、C
【分析】
①令,,,由判别式即可判断;②若,则a、c异号,由判别式即可判断;③令得,即可判断;④取,,来进行判断即可.
【详解】
①由当,,,,方程此时没有实数根,故①错误;
②若,a、c异号,则,方程一定有两个不相等的实数根,所以②正确;
③令得,则方程一定有一个根为;③正确;
④当,,时,有两个不相等的根为,但方程只有一个根为1,故④错误.
故选:C.
【点睛】
本题考查一元二次方程的解以及判别式,掌握用判别式判断根的情况是解题的关键.
7、B
【分析】
由题意得mn=1,m2﹣2021m+1=0,将代数式变形后再代入求解即可.
【详解】
∵方程x2﹣2021x+1=0的两根分别为m,n,
∴mn=1,m2﹣2021m+1=0,
∴m2﹣2021m=﹣1,
∴m2﹣=﹣1,
故选:B.
【点睛】
本题考查了根的定义及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=,熟练掌握代数式的求值技巧是解题的关键.
8、B
【分析】
先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值.
【详解】
解:根据题意,∵,
∴,
∴,
∴
;
∵,
解得:,,
∵,
∴,
∴;
故选:B
【点睛】
本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.
9、A
【分析】
设共有x个班级参赛,根据第一个球队和其他球队打场球,每个球队都打场球,并且都重复一次,根据计划安排15场比赛即可列出方程求解.
【详解】
解:设共有x个班级参赛,根据题意得:
,
解得:,(不合题意,舍去),
则共有6个班级参赛,
故选:A.
【点睛】
本题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.
10、C
【分析】
根据等量关系第10月的营业额×(1+x)2=第12月的营业额列方程即可.
【详解】
解:根据题意,得:,
故选:C.
【点睛】
本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
二、填空题
1、
【分析】
利用判别式的意义得到△,然后解不等式即可.
【详解】
解:根据题意得△,
解得.
故答案是:.
【点睛】
本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
2、
【分析】
一元二次方程有实数根,则,建立关于m的不等式,求出m的取值范围.
【详解】
解:∵关于x的一元二次方程3x2+4x+m=0有实数根,
∴,
故答案为:.
【点睛】
本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,.
3、2
【分析】
把方程的根代入原方程,求解即可.
【详解】
解:因为关于x方程的一个根是1,
所以,,解得,,
故答案为:2.
【点睛】
本题考查了一元二次方程的根,解题关键是明确方程根的意义,代入原方程求解.
4、
【分析】
根据方程的系数结合根的判别式Δ>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
【详解】
解:∵关于x的一元二次方程2x2﹣4x+k﹣=0有两个不相等的实数根,
∴Δ=(﹣4)2﹣4×2×(k﹣)>0,
解得:.
故答案为:
【点睛】
本题考查了一元二次方程根的判别式,掌握一元二次方程根的判别式的符号对应的三种根的情况是解题的关键.(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.
5、或
【分析】
如图所示,过点C作CE⊥AB于E,先根据含30度角的直角三角形的性质和勾股定理求出,设,则,,由,得到,由此求解即可.
【详解】
解:如图所示,过点C作CE⊥AB于E,
∴∠CEB=∠CEA=90°,
∵∠ABC=60°,
∴∠BCE=30°,
∴BC=2BE,
∴,
设,则,,
∵,
∴,
解得或,
∴或,
∴或,
故答案为:或.
【点睛】
本题主要考查了勾股定理和含30度角的直角三角形的性质,解一元二次方程,解题的关键在于能够熟练掌握含30度角的直角三角形的性质.
三、解答题
1、(1)原方程无解;(2).
【分析】
(1)方程两边同乘以化成整式方程,再解一元一次方程即可得;
(2)方程两边同乘以化成整式方程,再解一元二次方程即可得.
【详解】
解:(1),
方程两边同乘以,得,
移项、合并同类项,得,
系数化为1,得,
经检验,不是分式方程的解,
所以原方程无解;
(2),
方程两边同乘以,得,
移项、合并同类项,得,
因式分解,得,
解得或,
经检验,不是分式方程的解;是分式方程的解,
所以原方程的解为.
【点睛】
本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,分式方程需进行检验.
2、(1);(2);(3);(4).
【分析】
(1)根据算术平方根的性质、负整指数幂的性质、正弦定义等知识计算解题;
(2)根据二次根式的性质、二次根式的乘除法法则、完全平方公式等知识计算解题,
(3)利用配方法解题;
(4)利用提公因式法结合整体思想解题.
【详解】
解:(1)
;
(2)
;
(3)
(4)
或
【点睛】
本题考查实数的混合运算、二次根式的乘除法、解一元二次方程等知识,涉及正弦、整体思想等知识,是重要考点,难度一般,掌握相关知识是解题关键.
3、=1+,=1﹣
【分析】
方程移项后,二次项系数化为1,两个加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.
【详解】
解:方程移项得:3﹣6x=﹣1,
即﹣2x=﹣,
配方得:=,
开方得:x﹣1=±,
解得 =1+,=1﹣.
【点睛】
本题考查了公式法解一元二次方程,熟练掌握求根公式是解题的关键.
4、(1)该商品的售价为30元/件;(2)该店每月的捐款金额为270元.
【分析】
(1)根据总利润=每杯饮品的利润×销售数量,即可得出关于x的一元二次方程,解之再根据题意取舍即可得出结论;
(2)根据每月的捐款金额=1×每天销售的数量×30,即可得出结论.
【详解】
解:(1)∵该饮品的售价为x元/杯(20≤x≤40),且当售价是40元/杯时,每天可售出该饮品60杯,且售价每降低1元,就会多售出3杯,
∴每天能售出该饮品的杯数为60+3(40-x)=(180-3x)杯.
依题意,得:(x-20)(180-3x)-300=600,
整理,得:x2-80x+1500=0,
解得:x1=30,x2=50.
∵物价局规定每杯饮品的利润不得高于成本价的80%,
∴x≤40×80%,即x≤32,
x=50(不合题意,舍去).
答:该商品的售价为30元/件;
(2)1×(180-3×30)×30=270(元).
答:该店每月的捐款金额为270元.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
5、(1);;(2)当或或时,PQ与的一条边垂直;(3)当或时,为等腰三角形.
【分析】
(1)根据点的位置及运动速度可直接得出;
(2)根据题意分三种情况讨论:①当时,;②当时,;③当时,;作出图形,分别应用直角三角形中角的特殊性质求解即可得;
(3)根据题意,分四种情况进行讨论:①当点Q在BC边上时,时;②当点Q在BC边上时,时;③当点Q在BC边上时,时;④当点Q在AC边上时,只讨论情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.
【详解】
解:(1)点Q从点B出发,速度为,点P从点A出发,速度为,
∴,,
∴,
故答案为:;;
(2)根据题意分三种情况讨论:
①如图所示:当时,,
∵三角形ABC为等边三角形,
∴
∴
∴,
由(1)可得:,
解得:;
②如图所示:当时,,
∵
∴
∴,
由(1)可得:,
解得:;
③如图所示:当时,,
∵
∴
∴,
由(1)可得:,
解得:;
综上可得:当或或时,PQ与的一条边垂直;
(3)根据题意,分情况讨论:
①当点Q在BC边上时,时,
如图所示:过点Q作,
∵
∴
∴,
∴,
,,
∴
∵,
∴,
解得:或(舍去);
②当点Q在BC边上时,时,
如图所示:过点P作,
∵
∴
∴,
∴,
,,
∴
∵,
∴,
解得:(舍去);
③当点Q在BC边上时,时,如图所示:
由图可得:,,
,
∴这种情况不成立;
④当点Q在AC边上时,只讨论情况,如图所示:
过点Q作,过点C作,
∵,为等边三角形,
∴,,
∴,
,
∴,
∴,
∴,
∴,
∵,,
∴,
∵,
∴,
解得:或(舍去),
综上可得:当或时,为等腰三角形.
【点睛】
题目主要考查三角形与动点问题,包括勾股定理的应用,含角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.
北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题: 这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试综合训练题,共18页。试卷主要包含了关于x的一元二次方程,小亮等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习: 这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试巩固练习,共15页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。
北京课改版第十六章 一元二次方程综合与测试课后测评: 这是一份北京课改版第十六章 一元二次方程综合与测试课后测评,共17页。试卷主要包含了下列方程中是一元二次方程的是,一元二次方程的两个根是等内容,欢迎下载使用。