初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题,共16页。试卷主要包含了下列命题中,逆命题不正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于的一元二次方程的一个根是3,则的值是( )A.3 B. C.9 D.2、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%3、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,54、用配方法解方程x2+2x=1,变形后的结果正确的是( )A.(x+1)2=-1 B.(x+1)2=0 C.(x+1)2=1 D.(x+1)2=25、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )A.①⑤ B.① C.④ D.①④6、下列命题中,逆命题不正确的是( )A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方7、方程2x2-3x=2的一次项系数和常数项分别是( )A.3和2 B.-3和2 C.3和-2 D.-3和-28、若一元二次方程有一个根为1,则下列等式成立的是( )A. B. C. D.9、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.410、若方程的一个根为,则的值是( )A.7 B. C.4 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、智能音箱是市场上最火的智能产品之一,某商户一月份销售了100个智能音箱,三月份比一月份多销售44个,设该公司二、三月销量的月平均增长率为x,则可列方程为 _____.2、已知关于x的一元二次方程3x2+4x+m=0有实数根,则m的取值范围是_______.3、已知的算术平方根为a,则关于x的方程的根为____________.4、如图,一块长5m、宽4m的地毯,为了美观,设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.设配色条纹的宽度为xm,根据题意,列方程为 _____.
5、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1);(2).2、用适当的方法解方程(1); (2).3、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.(1)要使这两个正方形的面积之和为,小林该如何剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.4、已知关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,请求出m的最大整数值.5、解方程:(1) 2x2-4x-3=0.(2)3x(x-1)=2-2x. -参考答案-一、单选题1、C【分析】把x=3代入已知方程,列出关于m的方程,通过解方程可以求得m的值.【详解】解:关于的一元二次方程的一个根是3m=9故选:C【点睛】本题考查了一元二次方程的解的定义,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).∴该商店销售额平均每月的增长率为50%.故选:C.【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.3、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.4、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案.【详解】解:∵x2+2x=1,
∴x2+2x+1=1+1,
∴(x+1)2=2,
故选D.【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.5、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;②,不是方程,不符合题意;③,不是整式方程,不符合题意;⑤,是二元一次方程,不符合题意;⑤,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.6、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.7、D【分析】先将方程变形,再根据一元二次方程方程的一般形式“一元二次方程的一般形式是,其中是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项”进行解答即可得.【详解】解:一次项系数为:-3,常数项为:-2,故选D.【点睛】本题考查了一元二次方程的一次项系数和常数项,解题的关键是熟记一元二次方程的一般形式.8、D【分析】将代入方程即可得出答案.【详解】解:由题意,将代入方程得:,故选:D.【点睛】本题考查了一元二次方程的根,熟记一元二次方程的根的定义(使方程左、右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根)是解题关键.9、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.10、D【分析】将代入方程求解即可.【详解】解:将代入可得:,解得:,故选:D.【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键.二、填空题1、100(1+x)2=144.【分析】设该公司二、三月销量的月平均增长率为x,利用增长率表示三月销量100(1+x)2,列方程即可.【详解】解:设该公司二、三月销量的月平均增长率为x,则可列方程为100(1+x)2=100+44,即100(1+x)2=144,故答案为:100(1+x)2=144.【点睛】本题考查一元二次方程解增长率问题应用题,掌握一元二次方程解增长率问题应用题方法与步骤,抓住等量关系利用增长率表示三月销售智能音箱100(1+x)2与100+44相等列方程是解题关键.2、【分析】一元二次方程有实数根,则,建立关于m的不等式,求出m的取值范围.【详解】解:∵关于x的一元二次方程3x2+4x+m=0有实数根,∴,故答案为:.【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是明确当一元二次方程有实数根时,.3、x1=5,x2=1.【分析】先根据算术平方根求出a的值,在代入解一元二次方程即可.【详解】解:∵=9,9的算术平方根是3,∴a=3,∴关于x的方程(x-a)2=4变为(x-3)2=4∴x-3=±2解得x1=5,x2=1.故答案为:x1=5,x2=1.【点睛】本题考查了算术平方根的求法和一元二次方程的解法,做题的关键是求出a的值.4、2x2-9x+4=0【分析】设条纹的宽度为x米,根据“配色条纹所占面积=整个地毯面积的”的等量关系列出方程并整理即可.【详解】解:设条纹的宽度为x米.依题意得:2x×5+2x×4−4x2=×5×4整理得:2x2-9x+4=0.故填2x2-9x+4=0.【点睛】本题主要考查了列一元二次方程,审清题意、找到等量关系成为解答本题的关键.5、14【分析】根据第一天患病的人数为1+1×传播的人数,第二天患病的人数为第一天患病的人数×传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可.【详解】解:设每天一人传染了x人,则依题意得1+x+(1+x)×x=225,(1+x)2=225,∵1+x>0,∴1+x=15,x=14.答:每天一人传染了14人.【点睛】此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=225.三、解答题1、(1);(2)【分析】(1)把方程左边分解因式,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程右边化为0,再把方程左边分解因式,得到两个一次方程,再解一次方程即可.【详解】解:(1) 或 解得: (2) 或 解得:【点睛】本题考查的是利用因式分解的方法解一元二次方程,掌握“利用提公因式的方法把方程的左边分解因式,再把原方程化为两个一次方程”是解本题的关键.2、(1),,(2)【分析】用因式分解法解方程即可.【详解】解:(1), , , ,;(2),,,.【点睛】本题考查了一元二次方程解法,解题关键是熟练运用因式分解法解方程.3、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析【分析】(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.【详解】解:设剪成的两段分别为,.(1)根据题意,得,解得,.当时,;当时,.∴剪成的两段分别为12cm,28cm.(2)根据题意,得,整理,得.∵,∴该方程无解,∴小峰的说法正确.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.4、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可.【详解】解:∵关于x的方程(m﹣1)x2+2mx+m+3=0有两个实数根,∴b2﹣4ac=(2m)2﹣4(m﹣1)(m+3)=4m2﹣(4m2+8m﹣12)=4m2﹣4m2﹣8m+12=﹣8m+12≥0,m﹣1≠0,解得:m≤且m≠1,则m的最大整数值为0.【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键.5、(1)x1=1+,x2=1-;(2)x1=1,【分析】(1)根据公式法解一元二次方程即可;(2)根据因式分解的方法解一元二次方程【详解】解:(1)2x2-4x-3=0a=2,b=-4,c=-3,△=16+24=40>0,,∴x1=1+,x2=1-(2)3x(x-1)+2(x-1)=0,(x-1)(3x+2)=0, x-1=0或3x+2=0, 所以x1=1,【点睛】本题考查了解一元二次方程,掌握解一元二次方程的解法是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试同步测试题,共18页。试卷主要包含了方程的解是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习题,共17页。试卷主要包含了一元二次方程x2﹣x=0的解是,一元二次方程的两个根是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共15页。试卷主要包含了一元二次方程的解是等内容,欢迎下载使用。