初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试当堂达标检测题,共16页。试卷主要包含了如图,某学校有一块长35米,股市规定,下列方程中是一元二次方程的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的一元二次方程:x2﹣2x+m=0有两个不相等的实数根x1,x2,则( )A.x1+x2<0 B.x1x2<0 C.x1x2>﹣1 D.x1x2<12、下列一元二次方程两实数根和为-4的是( )A. B.C. D.3、若是关于的方程的一个根,则的值是( )A. B. C.1 D.24、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).A.3 B.4 C.5 D.65、为落实教育优先发展,南充市财政一般公共预算2019年教育经费投入93.15亿元,2021年教育经费投入99.45亿元,设南充市财政一般公共预算教育经费投入年平均增长率为x,则可列方程为( )A. B.C. D.6、一个三角形两边的长分别等于一元二次方程的两个实数根,则这个三角形的第三条边不可能为( )A.7 B.11 C.15 D.197、如图,某学校有一块长35米、宽20米的长方形试验田,为了便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为600平方米.设小道的宽为米,根据题意可列方程为( )A. B.C. D.8、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x满足的方程是( )A. B.C. D.9、下列方程中是一元二次方程的是( )A.y+2=1 B.=0 C. D.10、目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数达到3.92万户,设全市5G用户数年平均增长率为x,则x值为( )A.20% B.30% C.40% D.50%第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率 _____.2、把化一般形式为________,二次项系数为________,一次项系数为______,常数项为_______.3、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x,则可列方程为________.4、若,是方程的两个根,则______5、已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=___.三、解答题(5小题,每小题10分,共计50分)1、解下列方程:(1); (2).2、解方程:(1)(配方法)(2)(公式法)3、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.(1)要使这两个正方形的面积之和为,小林该如何剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.4、解方程:2x2+x﹣15=0.5、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法) -参考答案-一、单选题1、D【分析】利用根与系数关系,得到两根之和,即可判断A选项,利用根的判别式,求出的取值范围,利用两根之积,得到,最后即可判断出正确答案.【详解】解:由题意可知:两根之和:,故A错误,x2﹣2x+m=0有两个不相等的实数根,,解得:, 由根与系数的关系可知:,只有D选项正确,故选:D.【点睛】本题主要是考查了根与系数的关系以及根的判别式,熟练利用根与系数的关系,求出两根之和与两根之积,以及利用根的判别式,求出参数范围,是解决本题的关键.2、D【分析】根据根的判别式判断一元二次方程根的情况,再根据根与系数的关系求解即可【详解】解:A. ,,,不符合题意;B. ,,该方程无实根,不符合题意;C. ,,该方程无实根,不符合题意;D. ,,该方程有实根,且,符合题意;故选D【点睛】本题考查了一元二次方程根与系数的关系,掌握根与系数的关系以及使用的前提条件是一元二次方程有实根,掌握一元二次方程根与系数的关系和根的判别式是解题的关键.3、A【分析】将n代入方程,然后提公因式化简即可.【详解】解:∵是关于x的方程的根,∴,即,∵,∴,即,故选:A.【点睛】本题考查了一元二次方程的解,理解题意,熟练运用提公因式是解题关键.4、A【分析】根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.【详解】∵方程有两个不相等的实数根,∴判别式△>0,∴,∴a<4,故选A.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.5、A【分析】根据题意可直接进行求解.【详解】解:由题意可列方程为;故选A.【点睛】本题主要考查一元二次方程的应用,熟练掌握增长率问题是解题的关键.6、D【分析】先根据一元二次方程的解法得到这个三角形的两边长,然后再利用三角形三边关系可排除选项.【详解】解:,解得:,∴这个三角形的两边的长为6和11,∴第三边长x的范围为5<x<17;故选D.【点睛】本题主要考查一元二次方程的解法及三角形三边关系,熟练掌握一元二次方程的解法及三角形三边关系是解题的关键.7、C【分析】设小道的宽为米,则剩余部分可合成长米,宽米的长方形,根据种植面积为600平方米,列出关于的一元二次方程即可.【详解】解:设小道的宽为米,则剩余部分可合成长米,宽米的长方形,依题意得:.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系、列出一元二次方程是解答本题的关键.8、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.【详解】设x为平均每天下跌的百分率,
则:(1+10%)•(1-x)2=1;
故选:A.【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.9、B【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程,据此解答即可.【详解】解:A.是二元二次方程,故本选项不合题意; B.是一元二次方程,故本选项符合题意;C.是二元二次方程,故本选项不合题意;D.当a=0时,不含二次项,故本选项不合题意;故选:B.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.10、C【分析】先用含x的代数式表示出2021年底5G用户的数量, 然后根据2021年底5G用户数为3.92万户列出关于x的方程,解方程即得答案.【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: ,整理得:,∴,解得:x1=0.4=40%,x2= −2.4(不合题意,舍去).故选:C.【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.二、填空题1、10%【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是100(1+x)万元,今年的纳税额是100(1+x)2万元,据此即可列出方程求解.【详解】解:设该公司缴税的年平均增长率为x,依题意得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的实际应用---增长率问题,认真审题找到等量关系是是解题的关键.2、2x2-6x-1=0 2 -6 -1 【分析】先将方程移项化为一般形式,即可求解.【详解】解:将方程化成一般形式为,∴二次项系数为2,一次项系数为-6,常数项为-1.故答案为:①,②2,③-6,④-1.【点睛】本题主要考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.3、【分析】根据题意可得4月份的参观人数为人,则5月份的人数为,根据5月份的参观人数增加到12.1万人,列一元二次方程即可.【详解】根据题意设参观人数的月平均增长率为x,则可列方程为故答案为:【点睛】本题考查了一元二次方程的应用,根据增长率问题列一元二次方程是解题的关键.4、2【分析】根据一元二次方程根与系数关系求解即可.【详解】解:,是方程的两个根,则,故答案为:2.【点睛】本题考查了一元二次方程根与系数关系,解题关键是明确一元二次方程两根之和等于.5、−1【分析】根据一元二次方程的解把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.【详解】解:把x=0代入(a−1)x2−2x+a2−1=0得a2−1=0,解得a=±1,
∵a−1≠0,
∴a=−1.
故答案为:−1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.三、解答题1、(1),;(2)【分析】(1)先求解 再利用求根公式解方程即可;(2)先移项,把方程的右边化为0,再把方程的左边分解因式,化为两个一次方程,再解一次方程即可.【详解】解:(1) 即 (2) 或 解得:【点睛】本题考查的是公式法,因式分解法解一元二次方程,掌握“一元二次方程的求根公式”是解本题的关键.2、(1);(2)【分析】(1)利用配方法,首先将常数项移项,再配方,方程两边同时加上一次项系数一半的平方求出即可;(2)利用公式法直接代入求出即可.【详解】(1)(2)∴∴【点睛】本题考查了解一元二次方程,熟练掌握公式法、配方法的解题步骤是解题的关键.3、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析【分析】(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.【详解】解:设剪成的两段分别为,.(1)根据题意,得,解得,.当时,;当时,.∴剪成的两段分别为12cm,28cm.(2)根据题意,得,整理,得.∵,∴该方程无解,∴小峰的说法正确.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.4、或;【分析】利用十字相乘法把方程左边进行因式分解得到(2x5)(x+3)=0,进而解两个一元一次方程即可.【详解】解:,∴,∴或,∴或;【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,题目比较好,难度适中.5、(1),;(2),.【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.【详解】解:(1),,∴或,解得:,;(2),,,∴或,解得:,.【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试随堂练习题,共17页。
这是一份2020-2021学年第十六章 一元二次方程综合与测试同步练习题,共16页。试卷主要包含了下列事件为必然事件的是,已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。
这是一份初中数学第十六章 一元二次方程综合与测试测试题,共17页。试卷主要包含了方程x2=4x的解是,下列事件为必然事件的是等内容,欢迎下载使用。