![精品解析2022年京改版七年级数学下册第五章二元一次方程组综合测评试卷第1页](http://m.enxinlong.com/img-preview/2/3/12698750/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第五章二元一次方程组综合测评试卷第2页](http://m.enxinlong.com/img-preview/2/3/12698750/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品解析2022年京改版七年级数学下册第五章二元一次方程组综合测评试卷第3页](http://m.enxinlong.com/img-preview/2/3/12698750/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第五章 二元一次方程组综合与测试综合训练题
展开
这是一份初中数学第五章 二元一次方程组综合与测试综合训练题,共18页。试卷主要包含了设m为整数,若方程组的解x,若是关于x,二元一次方程组的解是等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若是方程的解,则等于( )A. B. C. D.2、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )A.4 B.3 C.2 D.13、由方程组可以得出关于x和y的关系式是( )A. B. C. D.4、设m为整数,若方程组的解x、y满足,则m的最大值是( )A.4 B.5 C.6 D.75、若是关于x、y的二元一次方程ax-5y=1的解,则a的值为( )A.-5 B.-1 C.9 D.116、用代入法解方程组,以下各式正确的是( )A. B.C. D.7、下列各组数值是二元次方程2x﹣y=5的解是( )A. B. C. D.8、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=09、二元一次方程组的解是( )A. B. C. D.10、已知方程,,有公共解,则的值为( ).A.3 B.4 C.0 D.-1第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则________.2、若与互为补角,并且的一半比小,则的度数为_________.3、若不等式组的解集为.则关于、的方程组的解为_____________.4、已知关于x的方程=1+中,a、b、k为常数,若无论k为何值,方程的解总是x=1,则a+b的值为 ___.5、已知关于x、y的二元一次方程组的解为,则a+b的值为 ___.三、解答题(5小题,每小题10分,共计50分)1、判断下列各组数是否是二元一次方程组的解.(1) (2)2、解方程组:(1); (2).3、解二元一次方程组:.4、某大型商场抓住商机购进A、B两款新童装进行销售,该商场用15000元购买了一定数量的A款童装和B款童装,且每件A款童装进价与每件B款童装进价均为150元,购买A款童装的数量的2倍比B款童装的数量多20件,若该商场本次以每件A款童装按进价加价100元进行销售,每件B款童装按进价加价60%进行销售,全部销售完,(1)求购进A、B两款童装各多少件?(2)春节期间该商场按上次进价又购进与上一次一样数量的A、B两款童装并展开了降价促销活动,在促销期间,该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m的值.5、若方程组是二元一次方程组,求a的值. ---------参考答案-----------一、单选题1、B【分析】把代入到方程中得到关于k的方程,解方程即可得到答案.【详解】解:∵是方程的解,∴,∴,故选B.【点睛】本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.2、C【分析】先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.【详解】解:由题意得:,联立,由①②得:,解得,将代入①得:,解得,将代入方程得:,解得,故选:C.【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.3、C【分析】分别用x,y表示m,即可得到结果;【详解】由,得到,由,得到,∴,∴;故选C.【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.4、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把①×3得:③,用③+①得:,解得,把代入①得,解得,∵,∴,即,解得,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.5、D【分析】把代入ax-5y=1解方程即可求解.【详解】解:∵是关于x、y的二元一次方程ax-5y=1的解,∴将代入ax-5y=1,得:,解得:.故选:D.【点睛】此题考查了二元一次方程解的含义,解题的关键是熟练掌握二元一次方程解的含义.6、B【分析】根据代入消元法的步骤把②变形代入到①中,然后整理即可得到答案.【详解】解:由②得,代入①得,移项可得,故选B.【点睛】本题考查了代入消元法,熟练掌握代入法是解题的关键.7、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;D. 把代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.8、B【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.9、C【分析】根据加减消元法,由①+②得出11x=33,求出x,再把x=3代入①求出y即可.【详解】解:,由①+②,得11x=33,解得:x=3,把x=3代入①,得9+2y=13,解得:y=2,所以方程组的解是,故选:C.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法解方程组.10、B【分析】联立,,可得:,,将其代入,得值.【详解】 ,解得,把代入中得:,解得:.故选:B.【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.二、填空题1、-7【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值即可.【详解】解:∵,∴,解得:,∴-2-5=-7,故答案为:-7.【点睛】本题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题的关键.2、【解析】【分析】根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.【详解】解:根据题意得,①-②得,,解得,把代入①得,,解得.∴,故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键.3、【解析】【分析】根据已知解集确定出a与b的值,代入方程组求出解即可.【详解】解:解不等式得:,解不等式得:,∵不等式组的解集为-2<x<3.∴a=2,b=3,代入方程组得:,①-②得:4y=4,即y=1,把y=1代入①得:x=2,则方程组的解为,故答案为:.【点睛】本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4、【解析】【分析】将代入方程,然后令的系数为0,得到关于的二元一次方程组,求解即可.【详解】解:将代入方程=1+得由题意可得:,解得则故答案为:【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.5、【解析】【分析】将代入中,求出的值,然后将的值代入求出的值,计算即可.【详解】解:∵关于x、y的二元一次方程组的解为,∴将代入中得:,解得:,即,将、代入中得:,∴,∴,故答案为:.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解是能使方程组成立的未知数的值.三、解答题1、(1)不是方程组的解 ;(2)不是方程组的解【分析】根据二元一次方程的解,将二元一次方程的解代入方程计算即可.【详解】解:(1)把代入方程①中,左边=2,右边=2,所以是方程①的解.把x=3,y=-5代入方程②中,左边=,右边=,左边≠右边,所以不是方程②的解.所以不是方程组的解.(2)把代入方程①中,左边=-6,右边=2,所以左边≠右边,所以不是方程①的解,再把代入方程②中,左边=x+y=-1,右边=-1,左边=右边,所以是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【点睛】本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.2、(1);(2).【分析】(1)利用代入消元法解二元一次方程组即可;(2)首先整理方程,然后利用加减消元法解二元一次方程组即可.【详解】解:(1),由①,可得:y=3x-7③,③代入②,可得:x+3(3x-7)=-1,解得:x=2,把x=2代入③,解得:y=-1,∴原方程组的解为.(2)原方程可化为,①×2-②,可得:3y=9,解得:y=3,把y=3代入①,解得:x=5,∴原方程组的解为.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.3、.【分析】方程组利用加减消元法求出解即可.【详解】解:,②-①得:2x=3,解得x=,把x=代入①得:2y=5,解得:y=-,则方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、(1)购进A款童装40件,B款童装60件;(2)【分析】(1)设购进A款童装x件,B款童装y件,则根据“该商场用15000元购买了一定数量的A款童装和B款童装”及“购买A款童装的数量的2倍比B款童装的数量多20件”可列出方程组进行求解;(2)由题意易得上次A款童装的利润为4000元,B款童装的利润为5400元,然后根据“该商场将每件A款童装按进价提高(m+10)%进行销售,每件B款童装按上次售价降低m%销售.结果全部销售完后销售利润比上次利润少了3040元”可列方程进行求解.【详解】解:(1)设购进A款童装x件,B款童装y件,由题意得:,解得:,答:购进A款童装40件,B款童装60件;(2)由(1)及题意可得:上次A款童装的利润为100×40=4000元,B款童装的利润为60×150×60%=5400元,即总利润为4000+5400=9400元,∴,解得:.【点睛】本题主要考查二元一次方程组的应用,解题的关键是找准题干中的等量关系.5、a=﹣3【分析】根据了二元一次方程组的定义,可得 且a﹣3≠0,解出即可【详解】解:∵方程组是二元一次方程组,∴ 且a﹣3≠0,∴a=﹣3.【点睛】本题主要考查了二元一次方程组的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程是二元一次方程,而由两个二元一次方程组成的方程组就是二元一次方程组是解题的关键.
相关试卷
这是一份初中数学第五章 二元一次方程组综合与测试当堂达标检测题,共19页。试卷主要包含了已知,则,已知二元一次方程组则等内容,欢迎下载使用。
这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试当堂检测题,共21页。
这是一份初中数学第五章 二元一次方程组综合与测试一课一练,共18页。试卷主要包含了方程x+y=6的正整数解有等内容,欢迎下载使用。