


北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时作业,共22页。
京改版七年级数学下册第七章观察、猜想与证明专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如所示各图中,∠1与∠2是对顶角的是( )A. B. C. D.2、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°3、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )A.40° B.50° C.140° D.150°4、如果一个角的补角是这个角的4倍,那么这个角为( )A.36° B.30° C.144° D.150°5、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )A. B.C. D.6、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s7、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个8、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70° B.80° C.100° D.110°9、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,b∥a,c∥a,求证:b∥c;证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴b∥c.小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是( )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠510、如图,O是直线AB上一点,OE平分∠AOB,∠COD=90°,则图中互余的角有( )对.
A.5 B.4 C.3 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知ABCD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.2、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.3、如果∠α是直角的,则∠α的补角是______度.4、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°. 5、(1)已知与互余,且,则________.(2)+________=180°.(3)若与是同类项,则m+n=________.三、解答题(5小题,每小题10分,共计50分)1、已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在内部作射线OC,且OC恰好平分.(1)若,求的度数;(2)若,求的度数.2、如图,CDAB,点O在直线AB上,OE平分∠BOD,OF⊥OE,∠D=110°,求∠DOF的度数.3、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点(1)若∠MAB=∠QCB=20°,则B的度数为 度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系 4、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.5、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明. ---------参考答案-----------一、单选题1、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.2、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.3、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.4、A【分析】设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.【详解】解:设这个角为 ,则它的补角为 ,根据题意得: ,解得: .故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.5、D【分析】由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.【详解】解:A.∵∠1+∠2度数不确定,
∴∠1与∠2不互为余角,故错误;
B.∵∠1+45°+∠2+45°=180°+180°=360°,
∴∠1+∠2=270°,
即∠1与∠2不互为余角,故错误;
C.∵∠1+∠2=180°,
∴∠1与∠2不互为余角,故错误;
D.∵∠1+∠2+90°=180°,
∴∠1+∠2=90°,
即∠1与∠2互为余角,故正确.
故选:D.【点睛】本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.6、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.7、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.8、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.9、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线a、b、c分别于点D、E、F,∵a∥b,∴∠1=∠4,又∵a∥c,∴∠1=∠5,∴∠4=∠5.∴b∥c.∴应补充∠4=∠5.故选:D.【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.10、B【分析】根据余角的定义找出互余的角即可得解.【详解】解:∵OE平分∠AOB,∴∠AOE=∠BOE=90°,∴互余的角有∠AOC和∠COE,∠AOC和∠BOD,∠COE和∠DOE,∠DOE和∠BOD共4对,故选:B.【点睛】本题考查了余角的定义,从图中确定余角时要注意按照一定的顺序,防止遗漏.二、填空题1、【分析】作EF∥AB,证明AB∥ EF∥CD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出.【详解】解:如图,作EF∥AB,∵AB∥CD,∴AB∥ EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴,∴ .故答案为:【点睛】本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.2、110︒度【分析】根据平行线的性质和角平分线的性质可得结论.【详解】解:∵AD//BC∴ ∵CE平分∠DCF∴ ∴ ∵AB//CD∴ ∵AD//BC∴ ∴ 故答案为:110︒【点睛】本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.3、157.5【分析】先根据直角的求出∠α,然后根据补角的定义求解即可.【详解】解:由题意知:∠α=90°×=22.5°,则∠α的补角=180°-22.5°=157.5°故答案为:157.5【点睛】本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键.4、120【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.5、 【分析】(1)根据余角的定义和角度的四则运算法则进行求解即可;(2)根据角度的四则运算法则求解即可;(3)根据同类项的定义,先求出m、n的值,然后代值计算即可.【详解】解:(1)与互余,且,∴;故答案为:;(2);故答案为:;(3)∵与是同类项,∴,∴,∴.故答案为:.【点睛】本题主要考查了求一个角的余角,角度的四则运算,同类项的定义,代数式求值,解一元一次方程,熟知相关知识是解题的关键.三、解答题1、(1)48°;(2)45°.【解析】【分析】(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°-∠BOM计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;【详解】解:(1)∵∠MON=90°,∠CON=24°,∴∠MOC=90°-∠CON=66°,∵OC平分∠MOB,∴∠BOM=2∠MOC=132°,∴∠AOM=180°-∠BOM=48°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;【点睛】本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.2、【解析】【分析】根据平行线的性质求得,根据角平分线和垂直求解即可.【详解】解:∵∴∵OE平分∠BOD∴又∵OF⊥OE∴∴故答案为:【点睛】此题考查了平行线、角平分线以及垂直的性质,解题的关键是掌握并利用它们的性质进行求解.3、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°【解析】【分析】(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.【详解】解:(1)作 ,∵MN//PQ,∴,∴ ,∴ ;(2)①如图所示,②过点F作 ,∴ ,∴ ,∵ ,∴ ,∵∴ ,∴ ,∵ ,∴ ;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∴∠BCQ=180°−my°,由(1)知,∠ABC=mx°+180°−my°,∴y°−x°=,∵MNPQ,∴∠MAE=∠DGP=x°,则∠CDA=∠DCP−∠DGC=y°−x°=,即m∠CDA+∠ABC=180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.4、61.5°【解析】【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.5、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.【解析】【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E,∴∠B=∠E.【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共22页。试卷主要包含了下列语句中,错误的个数是,下列说法中正确的个数是,下列命题中是真命题的是,下列语句中叙述正确的有等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试当堂达标检测题,共22页。试卷主要包含了若∠α=55°,则∠α的余角是,下列命题中,为真命题的是,如图,直线AB∥CD,直线AB,下列命题中,真命题是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共22页。试卷主要包含了下列说法,命题等内容,欢迎下载使用。
