![京改版七年级数学下册第九章数据的收集与表示专项训练试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12693074/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第九章数据的收集与表示专项训练试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12693074/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第九章数据的收集与表示专项训练试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12693074/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第九章 数据的收集与表示综合与测试课时练习
展开这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课时练习,共17页。
京改版七年级数学下册第九章数据的收集与表示专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有( )个.
①这种调查采用了抽样调查的方式,
②7万名考生是总体,
③1000名考生是总体的一个样本,
④每名考生的数学成绩是个体.
A.2 B.3 C.4 D.0
2、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
3、13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差 B.众数 C.平均数 D.中位数
4、下列采用的调查方式中,不合适的是
A.了解一批灯泡的使用寿命,采用普查
B.了解神舟十二号零部件的质量情况,采用普查
C.了解单县中学生睡眠时间,采用抽样调查
D.了解中央电视台《开学第一课》的收视率,采用抽样调查
5、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )
姓名 | 平时 | 期中 | 期末 | 总评 |
小明 | 90 | 90 | 85 |
|
A.86分 B.87分 C.88分 D.89分
6、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2 B.3 C.4 D.5
7、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
8、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是( )
A.5 B.4.5 C.25 D.24
9、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.
成绩/分 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
人数 | ■ | ■ | 1 | 2 | 3 | 5 | 6 | 8 | 10 | 12 |
下列关于成的统计量中、与被遮盖的数据无关的是( )
A.平均数 B.中位数
C.中位数、众数 D.平均数、众数
10、如果一组数据的平均数是5,则a的值( )
A.8 B.5 C.4 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.
2、某校有3000名学生,随机抽取了300名学生进行体重调查.该问题中样本是_______________.
3、某学校决定招聘数学教师一名,一位应聘者测试的成绩如表:
测试项目 | 笔试 | 面试 |
测试成绩(分) | 80 | 90 |
将笔试成绩,面试成绩按的比例计入总成绩,则该应聘者的总成绩是______分.
4、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
5、要想了解中国疫情的变化情况,最好选用 ___统计图;了解奥运会各项目获奖与总奖牌数的情况,最好选用 ___统计图.
三、解答题(5小题,每小题10分,共计50分)
1、下面是我国近几届奥运会所获金牌数,请指出其中的中位数.
第25届 | 第26届 | 第27届 | 第28届 | 第29届 |
16枚 | 16枚 | 28枚 | 32枚 | 51枚 |
2、至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.
(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.
(2)已知该班第一组8名同学数学成绩的离均差分别为:
+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.
①求这组同学数学成绩的最高分和最低分;
②求这组同学数学成绩的平均分;
③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?
3、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为、、、四类,其中表示“出行节约0﹣10分钟”,表示“出行节约10﹣30分钟”,表示“出行节约30分钟以上”,表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.
(1)求这次调查的总人数.
(2)补全条形统计图.
(3)在图②的扇形统计图中,求类所对应的扇形圆心角的度数.
4、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)
(1)求这10名男同学的达标率是多少?
(2)这10名男同学的平均成绩是多少?
(3)最快的比最慢的快了多少秒?
5、某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的衬衫.为了调查各种领口大小衬衫的销售情况,商店统计了某天的销售情况,并绘制了右面的扇形统计图,你认为该商店应多进哪种衬衫?
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.
【详解】
解:①为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,这种调查采用了抽样调查的方式,故说法正确;
②7万名考生的数学成绩是总体,故说法错误;
③1000名考生的数学成绩是总体的一个样本,故说法错误;
④每名考生的数学成绩是个体,故说法正确.
综上,正确的是①④,共2个,
故选:A.
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考察的事物.
2、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、D
【解析】
【分析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
解:共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,
所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选:D.
【点睛】
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;
、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;
、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;
、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、B
【解析】
【分析】
根据加权平均数的公式计算即可.
【详解】
解:小明该学期的总评得分=分.
故选项B.
【点睛】
本题考查加权平均数,掌握加权平均数公式是解题关键.
6、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
7、C
【解析】
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
8、C
【解析】
【分析】
根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.
【详解】
解:由题意可知:25出现了5次,出现次数最多,所以众数为25.
故选:C.
【点睛】
本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.
9、C
【解析】
【分析】
通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.
【详解】
解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),
成绩为100分的,出现次数最多,因此成绩的众数是100,
成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,
因此中位数和众数与被遮盖的数据无关,
故选:C.
【点睛】
本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.
10、A
【解析】
【分析】
根据平均数的计算公式计算即可;
【详解】
∵数据的平均数是5,
∴,
∴;
故选A.
【点睛】
本题主要考查了平均数的计算,准确计算是解题的关键.
二、填空题
1、 15
【解析】
【分析】
根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.
【详解】
解:这些队员年龄的平均数=
这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,
∴中位数为15
【点睛】
本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.
2、300名学生的体重
【解析】
【分析】
根据样本就是从总体中抽取出一部分个体即可得出答案.
【详解】
解:某校有3000名学生,随机抽取了300名学生进行体重调查,该问题中,300名学生的体重是调查的样本.
故答案为:300名学生的体重.
【点睛】
本题考查样本的定义,即从总体中抽取的一部分个叫做总体的一个样本,用样本的特征去估计总体的特征,是常用的统计思想方法.
3、
【解析】
【分析】
根据求加权平均数的方法求解即可
【详解】
解:
故答案为:
【点睛】
本题考查了求加权平均数,掌握加权平均数计算公式是解题的关键.加权平均数计算公式为:,其中代表各数据的权.
4、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
5、 折线 扇形
【解析】
【分析】
根据折线统计图不仅能够表示数量的多少而且能够表示数量的增减变化趋势;扇形统计图能够表示部分与整体之间的关系进行解答即可.
【详解】
解:根据统计图的特点可知:
要想了解中国疫情,既要知道每天患病数量的多少,又要反映疫情变化的情况和趋势,最好选用折线统计图;
了解奥运会各项目获奖与总奖牌数的情况,最好选用扇形统计图.
故答案为:折线,扇形.
【点睛】
此题考查了统计图的选择,掌握三种统计图的特点和作用是解答此题的关键.
三、解答题
1、28
【解析】
【分析】
根据中位数的求法:把数据按从小到大或从大到小排列,处于中间的数据即为该组数据的中位数,当数据个数为偶数时,则取中间两个数的平均值,当数据个数为奇数时,则取中间的数据,由此可求解.
【详解】
解:由图表可得:我国近几届奥运会所获金牌数的中位数为28.
【点睛】
本题主要考查中位数,熟练掌握求一组数据的中位数的定义是解题的关键.
2、(1);(2)最高分116,最低分52;(3)83.25分;(4)没有达到,低15分
【解析】
【分析】
(1)用小丽的数学成绩减去平均分即可得出小丽的离均差;
(2)①用班平均分加上离均差得出数学成绩,即可得出数学成绩的最高分与最低分;
②把这组同学的离均差相加除以8,再加上班平均分即可得出这组同学的平均分;
③用班平均分与组平均分作比较,作差即可得出答案.
【详解】
(1)小丽数学成绩的离均差为:;
(2)①这组同学数学成绩的最高分为:,
最低分为:;
②
(分),
∴这组同学数学成绩的平均分为83.25;
③∵,
∴该组数学成绩的平均分没有达到班平均分,
,
∴低了1.5分.
【点睛】
本题考查有理数的加减运算,掌握运算法则是解题的关键.
3、(1)50人;(2)见解析;(3)108°
【解析】
【分析】
(1)利用类的人数除以类所占百分比,即可求解;
(2)求出“出行节约30分钟以上”的人数,即可求解;
(3)用360°乘以类所占的百分比,即可求解.
【详解】
解:(1)调查的总人数是:(人).
(2)“出行节约30分钟以上”的人数有 (人),
补全图形,如图所示:
(3)A类所对应的扇形圆心角的度数是.
【点睛】
本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.
4、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒
【解析】
【分析】
(1)求这10名男同学的达标人数除以总人数即可求解;
(2)根据10名男同学的成绩即可求出平均数;
(3)分别求出最快与最慢的时间,故可求解.
【详解】
解(1)从记录数据可知达标人数是7
∴ 达标率=7÷10×100%=70%
(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)
∴这10名男同学的平均成绩是15.1秒
(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)
17-13.6=3.4(秒)
∴最快的比最慢的快了3.4秒.
【点睛】
此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.
5、应多进领口大小为40cm的衬衫.
【解析】
【分析】
根据题意,找出销售量所占比重最多的对应的尺寸的衬衫即可.
【详解】
解:根据扇形统计图可得:,
答:该商店应多进领口大小为40cm的衬衫.
【点睛】
此题考查的是众数的的意义,理解众数的意义作出相应的决策是解题关键.
相关试卷
这是一份北京课改版第九章 数据的收集与表示综合与测试同步练习题,共20页。试卷主要包含了以下调查中,适宜全面调查的是,数据,,,,,的众数是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试同步测试题,共17页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试课时练习,共18页。试卷主要包含了以下调查中,适宜全面调查的是,下列问题不适合用全面调查的是等内容,欢迎下载使用。