![京改版七年级数学下册第九章数据的收集与表示章节测试试卷(名师精选)第1页](http://m.enxinlong.com/img-preview/2/3/12693071/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第九章数据的收集与表示章节测试试卷(名师精选)第2页](http://m.enxinlong.com/img-preview/2/3/12693071/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![京改版七年级数学下册第九章数据的收集与表示章节测试试卷(名师精选)第3页](http://m.enxinlong.com/img-preview/2/3/12693071/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评
展开这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后测评,共17页。试卷主要包含了已知一组数据,一组数据分别为等内容,欢迎下载使用。
京改版七年级数学下册第九章数据的收集与表示章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )
A.89 B.90 C.91 D.92
2、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )
A.100分 B.95分 C.90分 D.85分
3、已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是( )
A.4,4 B.3.5,4 C.3,4 D.2,4
4、在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8,则小丽该周每天的平均睡眠时间是( )
A.7小时 B.7.5小时 C.8小时 D.9小时
5、班长王亮依据今年月“书香校园”活动中全班同学的课外阅读数量单位:本,绘制了如图折线统计图,下列说法正确的是( )
A.每月阅读数量的平均数是 B.众数是
C.中位数是 D.每月阅读数量超过的有个月
6、某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如表:
成绩(分) | 36 | 40 | 43 | 46 | 48 | 50 | 54 |
人数(人) | 2 | 5 | 6 | 7 | 8 | 7 | 5 |
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是48分
C.该班学生这次考试成绩的中位数是47分
D.该班学生这次考试成绩的平均数是46分
7、已知一组数据:2,0,,4,2,.这组数据的众数和中位数分别是( )
A.2,1.5 B.2,-1 C.2,1 D.2,2
8、如果一组数据的平均数是5,则a的值( )
A.8 B.5 C.4 D.2
9、一组数据分别为:、、、、、,则这组数据的中位数是( )
A. B. C. D.
10、为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( )
A.平均数 B.中位数 C.众数 D.方差
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则_______叫做这n个数的加权平均数.
2、数据8、9、8、10、8、8、10、7、9、8的中位数是________,众数是__________.
3、下列调查中,用全面调查方式收集数据的有________.
①为了了解学生对任课教师的意见,学校要求全体学生网上匿名评价教师;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;
③某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;
④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.
4、某校有3000名学生,随机抽取了300名学生进行体重调查.该问题中样本是_______________.
5、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.
三、解答题(5小题,每小题10分,共计50分)
1、某调查小组采用简单随机抽样方法,对我校部分学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:
(1)该调查小组抽取的样本容量为______;中位数为______.
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全条形统计图;
(3)请估计我校学生一天中阳光体育运动的平均时间.
2、某音像制品店某一天的销售的情况如图:
(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?
(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?
3、抽样调查了20名同学的打字速度(字/min),结果如下:15,18,10,32,8,12,13,17,9,9,27,18,4,6,11,14,16,21,25,12,求这20人打字的平均速度,你可以尝试用计算器解决.
4、乒乓球,被称为“国球”,在中华大地有着深厚的群众基础.2000年2月23日,国际乒联特别大会决定从2000年10月1日起,乒乓球比赛将使用直径40mm、重量2.7g的大球,以取代38mm的小球.某工厂按要求加工一批标准化的直径为40mm乒乓球,但是实际生产的乒乓球直径可能会有一些偏差.随机抽查检验该批加工的10个乒乓球直径并记录如下:﹣0.4,﹣0.2,﹣0.1,﹣0.1,﹣0.1,0,+0.1,+0.2,+0.3,+0.5(“+”表示超出标准;“﹣”表示不足标准).
(1)其中偏差最大的乒乓球直径是 mm;
(2)抽查的这10个乒乓球中,平均每个球的直径是多少mm?
(3)若误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品,这10个球的合格率是 ;良好率是 .
5、某鞋厂为了了解初中学生穿鞋的尺码情况,对某中学八年级(1)班的20名男生进行了调查,结果如图所示.
(1)写出这20个数据的平均数、中位数、众数;
(2)在平均数、中位数和众数中,鞋厂最感兴趣的是哪一个?
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+90×30%+88×50%=90(分).
即小彤这学期的体育成绩为90分.
故选:B.
【点睛】
此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.
2、C
【解析】
【分析】
由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.
【详解】
解:∵这组数据的平均数数是90,
∴(90+90+x+80)=90,解得x=100.
这组数据为:80,90,90,100,
∴中位数为90.
故选:C.
【点睛】
本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.
3、C
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这组数据从小到大排列:1,2,3,4,4,
最中间的数是3,
则这组数据的中位数是3;
4出现了2次,出现的次数最多,则众数是4;
故选:C.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
4、C
【解析】
【分析】
根据平均数的定义列式计算即可求解.
【详解】
解:(8+9+7+9+7+8+8)÷7=8(小时).
故小丽该周平均每天的睡眠时间为8小时.
故选:C.
【点睛】
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.
5、D
【解析】
【分析】
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
解:A、每月阅读数量的平均数是,故A错误,不符合题意;
B、出现次数最多的是,众数是,故B错误,不符合题意;
C、由小到大顺序排列数据,中位数是,故C错误,不符合题意;
D、由折线统计图看出每月阅读量超过的有个月,故D正确,符合题意;
故选:D.
【点睛】
本题考查了折线统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.折线统计图表示的是事物的变化情况.注意求中位数先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
6、D
【解析】
【分析】
由题意直接根据总数,众数,中位数的定义逐一判断即可得出答案.
【详解】
解:该班一共有:2+5+6+7+8+7+5=40(人),
得48分的人数最多,众数是48分,
第20和21名同学的成绩的平均值为中位数,中位数为(分),
平均数是(分),
故A、B、C正确,D错误,
故选:D.
【点睛】
本题主要考查众数和中位数、平均数,解题的关键是掌握众数和中位数、平均数的概念.
7、C
【解析】
【分析】
根据众数和中位数的求解方法解答即可.
【详解】
解:把这组数据从小到大排列:,,0,2,2,4.
∴中位数=,
∵数字2有2个,其他数字都是只有一个,
∴众数是2.
故选:C.
【点睛】
此题考查了众数和中位数,解题的关键是熟练掌握众数和中位数的求解方法.
8、A
【解析】
【分析】
根据平均数的计算公式计算即可;
【详解】
∵数据的平均数是5,
∴,
∴;
故选A.
【点睛】
本题主要考查了平均数的计算,准确计算是解题的关键.
9、D
【解析】
【分析】
将数据排序,进而根据中位数的定义,可得答案.
【详解】
解:数据、、、、、从小到大排列后可得:、、、、、,
排在中间的两个数是79,81,
所以,其中位数为,
故选:D.
【点睛】
本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
10、B
【解析】
【分析】
由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.
【详解】
解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,
故选B.
【点睛】
本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.
二、填空题
1、
【解析】
【分析】
根据加权平均数的计算方法求解即可得.
【详解】
解:根据题意可得:
加权平均数为:,
故答案为:.
【点睛】
题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.
2、 8 8
【解析】
【分析】
根据中位数的定义:一组数据中处在最中间的数或处在最中间的两个数的平均数;众数的定义:一组数据中出现次数最多的数,进行求解即可.
【详解】
解:把这组数据从小到大排列为:7,8,8,8,8,8,9,9,10,10,
∵处在最中间的两个数分别为8,8,
∴中位数,
∵8出现了四次,出现的次数最多,
∴众数为8,
故答案为:8,8.
【点睛】
本题主要考查了求众数和求中位数,解题的关键在于能够熟练掌握相关知识进行求解.
3、①③
【解析】
【分析】
根据抽样调查和全面调查的特点依次分析各项即可判断.
【详解】
解:①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查,属于全面调查;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查,属于抽样调查;
③某班学生拟组织一次春游活动,为了确定春游的地点,向同学进行调查,属于全面调查;
④了解全班同学的作业完成情况,对学号为奇数的学生进行调查,属于抽样调查;
故答案为:①③
【点睛】
本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识.
4、300名学生的体重
【解析】
【分析】
根据样本就是从总体中抽取出一部分个体即可得出答案.
【详解】
解:某校有3000名学生,随机抽取了300名学生进行体重调查,该问题中,300名学生的体重是调查的样本.
故答案为:300名学生的体重.
【点睛】
本题考查样本的定义,即从总体中抽取的一部分个叫做总体的一个样本,用样本的特征去估计总体的特征,是常用的统计思想方法.
5、 9万名考生的数学成绩 每名考生的数学成绩 被抽出的2000名考生的数学成绩 2000
【解析】
【分析】
根据抽样中总体、个体、样本以及样本容量的概念解答即可.
【详解】
根据题意,
在这个抽样中,总体是9万名考生的数学成绩,
个体是每名考生的数学成绩,
样本是被抽出的2000名考生的数学成绩,
样本容量是2000.
故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.
【点睛】
本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.
三、解答题
1、(1)500;1;(2)120;图见解析;(3)1.18小时.
【解析】
【分析】
(1)利用0.5小时的人数为100人,所占比例为20%,即可求出样本容量;
(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,画图即可;
(3)计算出该市中小学生一天中阳光体育运动的平均时间即可.
【详解】
解:(1)由题意可得:0.5小时的人数为:100人,所占比例为:20%,
100÷20%=500,
∴本次调查共抽样了500名学生;
∴第250名学生的运动时间为1小时,第251名学生的运动时间为1小时,
∴中位数=;
(2)1.5小时的人数为:500×24%=120(人)
故答案为:120,
如图所示:
(3)根据题意得:,即该市中小学生一天中阳光体育运动的平均时间约1.18小时.
【点睛】
此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.
2、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.
【解析】
【分析】
(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.
(2)根据条形统计图的特点回答即可.
【详解】
解:(1)从条形统计图看,
民歌类唱片销售量为:80(张),
流行歌曲唱片销售量为:120(张),
∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3、14.85字/min
【解析】
【分析】
平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:,
,
14.85(字/min)
答:这20人打字的平均速度是14.85字/min.
【点睛】
本题主要考查了算术平均数,理解算术平均数的定义和求法是解题关键.
4、(1);(2);(3),
【解析】
【分析】
(1)根据题意列式计算即可;
(2)根据平均数的定义即可得到结论;
(3)根据误差在“±0.25mm”以内的球可以作为合格产品,误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比,即可求解.
【详解】
解:(1)其中偏差最大的乒乓球的直径是
故答案为
(2)这10乒乓球平均每个球的直径是
故答案为
(3)这些球的合格率是
良好率为
故答案为,
【点睛】
此题考查了正数和负数的意义,解题的关键是理解正和负的相对性,明确什么是一对具有相反意义的量.
5、(1)平均数为39.1码,中位数为39码,众数为40码;(2)鞋厂最感兴趣的是众数
【解析】
【分析】
(1)根据平均数、众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.
(2)鞋厂最感兴趣的是使用的人数,即众数.
【详解】
解:(1)平均数=(37×3+38×4+39×4+40×7+41×1+42×1)÷20=39.1.
观察图表可知:有7人的鞋号为40,人数最多,即众数是40;
中位数是第10、11人的平均数,(39+39)÷2=39,
故答案为:平均数为39.1码,中位数为39码,众数为40码;
(2)鞋厂最感兴趣的是使用的人数,即众数,
故答案为:鞋厂最感兴趣的是众数.
【点睛】
本题考查平均数,众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.正确理解中位数、众数及平均数的概念,是解决本题的关键.
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课时训练,共19页。试卷主要包含了山西被誉为“表里山河”,意思是,某中学七等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试测试题,共16页。试卷主要包含了下列调查中,最适合抽样调查的是,下列调查中,适合采用全面调查等内容,欢迎下载使用。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试练习题,共19页。试卷主要包含了以下调查中,适宜全面调查的是,某教室9天的最高室温统计如下等内容,欢迎下载使用。