


初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后复习题
展开
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课后复习题,共18页。
京改版七年级数学下册第九章数据的收集与表示专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、山西被誉为“表里山河”,意思是:外有大河,内有高山.下表是我省11个地市最高峰高度的统计结果,其中最高峰高度的中位数是( )城市太原大同阳泉长治晋城临汾运城吕梁晋中忻州朔州最高峰高度(米)278924201874252323582504.3235828312566.63061.12333A.2420米 B.2333米 C.2504.3米 D.2566.6米2、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.频数直方图3、已知一组数据3,7,5,3,2,这组数据的众数为( )A.2 B.3 C.4 D.54、某班学生在颁奖大会上得知该班获得奖励的情况如下表:项目人数级别三好学生优秀学生干部优秀团员市级111区级322校级17512已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A.3项 B.4项 C.5项 D.6项5、某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:使用寿命x/h80120160灯泡只数303040这批灯泡的平均使用寿命是( )A. B. C. D.6、下列调查中,其中适合采用抽样调查的是( )A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量7、下列调查中,调查方式选择不合理的是( )A.为了了解新型炮弹的杀伤半径,选择抽样调查B.为了了解某河流的水质情况,选择普查C.为了了解神舟飞船的设备零件的质量情况,选择普查D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查8、请根据“2021年全运会金牌前十排行榜”判断,金牌数这一组数据的中位数为( )排名12345678910代表团山东广东浙江江苏上海湖北福建湖南四川辽宁金牌数A.36 B.27C.35.5 D.31.59、某校航模兴趣小组共有50位同学,他们的年龄分布如表:年龄/岁13141516人数523▃▃由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( )A.平均数、众数 B.众数、中位数C.平均数、方差 D.中位数、方差10、八(3)班七个兴趣小组人数分别为4、4、5、、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是( )A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则众数是 _____分.2、若、、的平均数为,则、、的平均数为______.3、若一组数据85、x、80、90、95的平均数为85,则x的值为________.4、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分709080将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是____分.5、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表: 鱼的条数平均每条鱼的质量第一次捕捞20第二次捕捞10第三次捕捞10那么,鱼塘中鲢鱼的总质量约是________kg.三、解答题(5小题,每小题10分,共计50分)1、为考察甲、乙两种农作物的长势,研究人员分别抽取了10株苗,测得它们的高度(单位:cm)如下:甲:9,14,11,12,9,13,10,8,12,8;乙:8,13,12,11,9,12,7,7,9,11你认为哪种农作物长得高一些?说明理由.2、为了响应“全民全运,同心同行”的号召,某学校要求学生积极加强体育锻炼,坚持做跳绳运动,跳绳可以让全身肌肉匀称有力,同时会让呼吸系统、心脏、心血管系统得到充分锻炼,学校为了了解学生的跳绳情况,在九年级随机抽取了10名男生和10名女生,测试了这些学生一分钟跳绳的个数,测试结果统计如下:请你根据统计图提供的信息,回答下列问题:(1)所测学生一分钟跳绳个数的众数是_____________,中位数是_______________;(2)求这20名学生一分钟跳绳个数的平均数;3、某年级共有4个班,各班学生的平均身高分别为1.65m,1.63m,1.65m,1.66m,你能估计出该年级学生平均身高的范围吗?你能具体计算出该年级学生的平均身高吗?4、一个中学礼仪队的20名女队员的身高(单位:cm)如图所示,你能大致估计出队员的平均身高吗?能用一种简便的方法计算这些队员的平均身高吗?5、如图是连续十周测试甲、乙两名运动员体能情况的折线统计图,教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写下表: 平均数(分)中位数(分)体能测试成绩合格次数(次)甲 乙 (2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好;②依据平均数与中位数比较甲和乙, 的体能测试成绩较好; (3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好. ---------参考答案-----------一、单选题1、C【解析】【分析】根据中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,最中间的那个数(或最中间两个数的平均数).【详解】把这11个数从小到大排列为:1874,2333,2358,2358,2420,2504.3,2523,2566.6,2789,2831,3061.1,共有11个数,中位数是第6个数2504.3,故选:C.【点睛】此题考查了中位数,属于基础题,熟练掌握中位数的定义是解题关键.2、A【解析】【分析】根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.【详解】解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:A.【点睛】此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.3、B【解析】【分析】根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.【详解】解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;故选:B.【点睛】此题考查了众数的定义;熟记众数的定义是解决问题的关键.4、C【解析】【分析】根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:项.故选:C.【点睛】题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.5、B【解析】【分析】先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.【详解】解:这批灯泡的平均使用寿命是=124(h),故选:B.【点睛】本题考查了加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数.6、D【解析】【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.7、B【解析】【分析】根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.【详解】解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.故选:B.【点睛】本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.8、D【解析】【分析】根据中位数定义解答.将这组数据从小到大的顺序排列,第5、6个数的平均数为中位数.【详解】解:将这组数据从小到大的顺序排列处于中间位置的数即第5名和第6名的金牌数是36、27,那么由中位数的定义可知,这组数据的中位数是.故选D.【点睛】本题为统计题,考查中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9、B【解析】【分析】根据众数、中位数的定义进行判断即可.【详解】解:一共有50人,中位数是从小到大排列后处在第25、26位两个数的平均数,而13岁的有5人,14岁的有23人,因此从小到大排列后,处在第25、26位两个数都是14岁,因此中位数是14岁,不会受15岁,16岁人数的影响;因为14岁有23人,而13岁的有5人,15岁、16岁共有22人,因此众数是14岁;故选:B.【点睛】此题考查应用统计量解决实际问题,正确掌握众数的定义,中位数的定义是解题的关键.10、B【解析】【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、94【解析】【分析】根据众数的定义直接解答即可.【详解】解:∵94分出现了2次,出现的次数最多,∴众数是94分.故答案为:94.【点睛】本题考查了众数的定义.众数是一组数据中出现次数最多的数据,注意:众数可以不止一个.2、9【解析】【分析】根据、、的平均数为7可得,再列出计算、、的平均数的代数式,整理即可得出答案.【详解】解:∵、、的平均数为7,∴,∴,故答案为:9【点睛】本题考查计算平均数.掌握平均数的计算公式是解题关键.3、75【解析】【分析】只要运用求平均数公式即可求出.【详解】由题意知,(85+x+80+90+95)=85,解得x=75.故填75.【点睛】本题考查了平均数的概念.熟记公式是解决本题的关键.4、78【解析】【分析】根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值即可求得.【详解】解:根据题意,该应聘者的总成绩是:(分)故答案为【点睛】此题考查加权平均数,解题的关键是熟记加权平均数的计算方法.5、3600【解析】【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:千克,成活的鱼的总数为:条,则总质量约是千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量总条数,能够根据样本估算总体.三、解答题1、甲,理由见解析【解析】【分析】求出两组数据的平均数,比较大小即可.【详解】解:(cm);(cm);甲、乙两种农作物的平均高度分别为10.6cm和9.9cm,因此可以认为甲种农作物长得高一些.【点睛】本题考查了平均数的计算,解题关键是会熟练运用平均数公式进行计算.2、(1)160个,160个(2)155个【解析】【分析】(1)根据众数和中位数的定义求出即可;(2)根据加权平均数公式求出答案即可.【详解】解:(1)由统计图可知:跳绳个数100个的有1人,跳绳个数120个的有1人,跳绳个数140个的有6人,跳绳个数160个的有8人,跳绳个数180个的有2人,跳绳个数200个的有2人,所以众数为160个,中位数是(160+160)÷2=160(个),故答案为:160个,160个;(2)这20名学生一分钟跳绳个数的平均数是=155(个),答:这20名学生一分钟跳绳个数的平均数是155个.【点睛】本题考查了众数、中位数、平均数等知识点,能熟记众数和中位数的定义和加权平均数的公式是解此题的关键.3、之间,见解析【解析】【分析】平均数反映了一组数的平均水平,其中有些数据高于平均水平,有些数据等于平均水平,也有些数据低于平均水平,由此可得该年级学生的平均身高范围,一般情况下各班人数不一定相同,所以不能确定.【详解】解:该年级学生平均身高的范围介于之间,不能得到该年级学生的平均身高,因为4个班的人数不一定相等.【点睛】本题考查了算术平均数,注意计算算术平均数时,需要确定总人数.4、170cm,见解析【解析】【分析】根据图中点的大致分布发现在170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同即可大致估计出队员的平均身高;将图中数据汇总至表格中,再根据求平均数的方法求解即可.【详解】解:队员的平均身高大致为170cm,因为170cm这条线上有5个点,其余点在这条直线上、下两侧,且点数基本相同;根据统计图得到20名女队员的身高为:身高/cm165167168169170171172173174人数122253221 故队员的平均身高为:cm.【点睛】本题考查了平均数的求法,解题的关键是能从图中获取相应的数据,再进行求解.5、(1)见解析;(2)①乙;②甲;(3)乙【解析】【分析】(1)根据折线统计图的数据,分别求得平均数,中位数,以及合格的次数,再填表即可;(2)由于甲、乙的平均成绩一致,根据合格次数与中位数的大小比较即可求得答案;(3)根据折线统计图中甲、乙的趋势和成绩合格的次数分析即可求得.【详解】解:(1)根据折线统计图可知甲的成绩分别为,乙的成绩分别为则甲的平均分为,将甲的成绩从小到大排列:,则甲的中位数为,合格次数为2次乙的平均分为,乙的中位数为,合格次数为4次填表如下 平均数(分)中位数(分)体能测试成绩合格次数(次)甲60652乙6057.54 (2)依据平均数与成绩合格的次数比较甲和乙,甲、乙的平均成绩一致,乙的合格次数比甲的多,故乙的体能测试成绩较好;依据平均数与中位数比较甲和乙,甲、乙的平均成绩一致,甲的中位数分数较高,故甲的体能测试成绩较好;故答案为:乙,甲(3)从折线图上看,两名运动员体能测试成绩都呈上升的趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格的次数比甲多,所以乙训练的效果较好.【点睛】本题考查了折线统计图,求一组数据的平均数,求一组数据的中位数,看懂统计图是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第九章 数据的收集与表示综合与测试课时训练,共17页。试卷主要包含了一组数据分别为,下列做法正确的是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试随堂练习题,共19页。
这是一份数学七年级下册第九章 数据的收集与表示综合与测试同步练习题,共18页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。