七年级下册第八章 因式分解综合与测试课后测评
展开
这是一份七年级下册第八章 因式分解综合与测试课后测评,共15页。试卷主要包含了多项式分解因式的结果是,下列分解因式结果正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )A.an﹣1 B.2an C.2an﹣1 D.2an+12、下列运算错误的是( )A. B. C. D.(a≠0)3、下列多项式不能用公式法因式分解的是( )A. B. C. D.4、下列多项式中能用平方差公式分解因式的是( )A.﹣a2﹣b2 B.x2+(﹣y)2C.(﹣x)2+(﹣y)2 D.﹣m2+15、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.36、下列各式中从左到右的变形中,是因式分解的是( )A. B.C. D.7、下列各组多项式中,没有公因式的是( )A.ax﹣by和by2﹣axy B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b28、多项式分解因式的结果是( )A. B.C. D.9、下列分解因式结果正确的是( )A.a2b+7ab﹣b=b(a2+7a) B.3x2y﹣3xy+6y=3y(x2﹣x﹣2)C.8xyz﹣6x2y2=2xyz(4﹣3xy) D.﹣2a2+4ab﹣6ac=﹣2a(a﹣2b+3c)10、多项式与的公因式是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:______.2、把多项式分解因式的结果是______.3、分解因式:25x2﹣16y2=_____.4、在实数范围内因式分解:x2﹣3=___,3x2﹣5x+2=___.5、如果,,那么代数式的值是________.三、解答题(5小题,每小题10分,共计50分)1、把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)22、分解因式:(1) (2)3、分解因式:a3﹣a2b﹣4a+4b.4、将下列多项式进行因式分解:(1);(2).5、分解因式(1); (2) ---------参考答案-----------一、单选题1、C【解析】【分析】根据提取公因式的方法计算即可;【详解】原式,∴2an﹣1﹣4an+1的公因式是,即;故选C.【点睛】本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.2、A【解析】【分析】根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.【详解】解:A. ,故该选项错误,符合题意;B. ,故该选项正确,不符合题意;C. ,故该选项正确,不符合题意; D. (a≠0),故该选项正确,不符合题意,故选A.【点睛】本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.3、C【解析】【分析】A、B选项考虑利用完全平方公式分解,C、D选项考虑利用平方差公式分解.【详解】解:A.a2-8a+16=(a-4)2,故选项A不符合题意;B. ,故选项B不符合题意;C. -a2-9不是平方差的形式,不能运用公式法因式分解,故选项C符合题意;D. ,故选项D不符合题意;故选C【点睛】本题考查了整式的因式分解,掌握因式分解的公式法是解决本题的关键.4、D【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断后利用排除法求解.【详解】解:A、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;B、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;C、,有两个平方项,但是符号相同,不能用平方差公式进行分解,不符合题意;D、,可以利用平方差公式进行分解,符合题意;故选:D.【点睛】本题考查利用平方差公式因式分解,掌握利用平方差公式因式分解时,多项式需满足的结构特征是解题关键.5、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.6、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7、D【解析】【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】解:A、by2−axy=−y(ax−by),故两多项式的公因式为:ax−by,故此选项不合题意;B、3x−9xy=3x(1−3y)和6y2−2y=−2y(1−3y),故两多项式的公因式为:1−3y,故此选项不合题意;C、x2−y2=(x−y)(x+y)和x−y,故两多项式的公因式为:x−y,故此选项不合题意;D、a+b和a2−2ab+b2=(a−b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键.8、B【解析】【分析】先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y).故选:B.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.9、D【解析】【分析】分别对四个选项进行因式分解,然后进行判断即可.【详解】解:A、原式=b(a2+7a-1),故不符合题意;B、原式=3y(x2﹣x+2),故不符合题意;C、原式=2xy(4z﹣3xy),故不符合题意;D、原式=﹣2a(a﹣2b+3c),故符合题意.故选D.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握提公因式法分解因式.10、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.【详解】解:,,则多项式与的公因式是,故选:B.【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.二、填空题1、【解析】【分析】直接提取公因式,再利用完全平方公式分解因式得出答案.【详解】解:原式 .故答案为:.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.2、【解析】【分析】先提取4m,再根据平方差公式即可因式分解.【详解】=故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知平方差公式的特点.3、##【解析】【分析】利用平方差公式计算即可.【详解】解:原式==,故答案为:.【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键.4、 (3x-2)(x-1)【解析】【分析】前一个利用平方差公式分解;后一个利用十字相乘法因式分解即可.【详解】解:x2-3= x2-;3x2-5x+2=(3x-2)(x-1).故答案为:;(3x-2)(x-1).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.5、-64【解析】【分析】先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.【详解】解:==∵,,∴原式=2×(-4)×8=-64,故答案是:-64.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.三、解答题1、(1)6ab(b+2a)(b-2a);(2)(x-2)2(x+2)2;(3)(x+y)(a+b)(a-b);(4)-(m+n)2(m-n)2【解析】【分析】(1)先提取公因式,再按照平方差公式分解即可;(2)先按照完全平方公式分解,再按照平方差公式分解即可;(3)先提取公因式,再按照平方差公式分解即可;(4)先按照平方差公式分解因式,再添负号,添括号,按照完全平方公式分解即可.【详解】解:(1)原式=6ab(b2-4a2)=6ab(b+2a)(b-2a).(2)原式=(x2-4)2=(x-2)2(x+2)2.(3)原式=(x+y)(a2-b2)=(x+y)(a+b)(a-b).(4)原式=(2mn+m2+n2)(2mn-m2-n2)=-(m+n)2(m-n)2.【点睛】本题考查的是综合提取公因式,公式法分解因式,易错点是一定要分解彻底.2、(1);(2)【解析】【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1);(2)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、(a﹣b)(a+2)(a﹣2)【解析】【分析】先分组,再提公因式,最后用平方差公式进一步进行因式分解.【详解】解:a3﹣a2b﹣4a+4b=(a3﹣4a)﹣(a2b﹣4b)=a(a2﹣4)﹣b(a2﹣4)=(a﹣b)(a2﹣4)=(a﹣b)(a+2)(a﹣2).【点睛】本题考查了因式分解法中的分组法、提公因式法、平方差公式的综合应用,正确地进行分组,找到公因式,并且注意因式分解要彻底,这是解题的关键.4、(1);(2).【解析】【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可.【详解】解:(1)原式;(2)原式.【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法.5、(1);(2).【解析】【分析】(1)先提取公因式 再利用完全平方公式进行分解即可;(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.【详解】(1)解:原式= = (2)解:原式= = =【点睛】本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.
相关试卷
这是一份2020-2021学年第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了下列变形,属因式分解的是,已知c<a<b<0,若M=|a,把分解因式的结果是.等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试综合训练题,共16页。试卷主要包含了能利用进行因式分解的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共15页。试卷主要包含了把代数式分解因式,正确的结果是,因式分解等内容,欢迎下载使用。