初中数学北京课改版七年级下册第八章 因式分解综合与测试一课一练
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了已知,,那么的值为,下列因式分解正确的是,多项式与的公因式是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-92、下列各式从左到右的变形是因式分解的是( )A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)3、下列等式中,从左到右的变形是因式分解的是( )A. B.C. D.4、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )A.非负数 B.正数 C.负数 D.非正数5、已知,,那么的值为( )A.3 B.6 C. D.6、下列因式分解正确的是( )A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)7、若可以用公式进行分解因式,则的值为( )A.6 B.18 C. D.8、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)9、多项式与的公因式是( )A. B. C. D.10、已知a2-2a-1=0,则a4-2a3-2a+1等于( )A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:=__________.2、分解因式_________.3、因式分解:=_________.4、把多项式ax2-2axy+ay2分解因式的结果是____.5、在实数范围内分解因式:x2﹣3xy﹣y2=___.三、解答题(5小题,每小题10分,共计50分)1、分解因式(1) (2)(3)2、把下列各式因式分解:(1) (2)3、因式分解:(1)(2).4、把下列各式因式分解:(1)(2)5、因式分解:(1)(2) ---------参考答案-----------一、单选题1、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.2、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.3、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此逐一判断即可得答案.【详解】A.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,B.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,C.是把一个多项式化为几个整式的积的形式,是因式分解,符合题意,D.等号右边不是几个整式的积的形式,不是因式分解,不符合题意,故选:C.【点睛】此题考查了因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解;练掌握因式分解的概念是题关键.4、A【解析】【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x2-4x+y2-6y+13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.5、D【解析】【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.6、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.【详解】解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;C、m2-6m+9=(m-3)2,故该选项正确;D、1-a2=(a+1)(1-a),故该选项错误;故选:C.【点睛】本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.7、D【解析】【分析】根据完全平方公式进行因式分解即可得.【详解】解:由题意得:,即,则,故选:D.【点睛】本题考查了利用完全平方公式进行因式分解,熟练掌握完全平方公式是解题关键.8、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.9、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得.【详解】解:,,则多项式与的公因式是,故选:B.【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键.10、C【解析】【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【详解】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.二、填空题1、##()(2- x)(2+x)【解析】【分析】观察式子可发现此题为两个数的平方差,所以利用平方差公式分解即可.【详解】解:故答案为:【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.2、【解析】【分析】直接提取公因式m,进而分解因式得出答案.【详解】解:=m(m+6).故答案为:m(m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.3、【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【解析】【分析】先提公因式,然后根据完全平方公式因式分解即可.【详解】解:原式==,故答案为:【点睛】本题考查了提公因式法和公式法因式分解,熟练掌握完全平方公式的结构特点是解本题的关键.5、.【解析】【分析】先利用配方法,再利用平方差公式即可得.【详解】解:===.故答案为:.【点睛】本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.三、解答题1、(1);(2);(3)【解析】【分析】(1)原式提取公因式后,利用平方差公式分解即可;(2)原式先利用完全平方公式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可.【详解】解:(1)a;(2);(3)【点睛】本题考查的是因式分解,掌握提公因式与公式法,分组分解法分解因式是解题的关键.2、(1);(2)【解析】【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 .【详解】(1),原式 ;(2) ,原式,.【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键.3、(1);(2)【解析】【分析】(1)先提取公因式,再利用完全平方公式因式分解;(2)先利用平方差公式因式分解,再利用完全平方公式因式分解.【详解】解:(1)原式==;(2)原式==【点睛】本题考查综合利用提公因式法和公式法因式分解,一般能提取公因式先提取公因式,再看能否用公式法因式分解.注意:因式分解一定要彻底.4、(1);(2)【解析】【分析】(1)先提取公因式 再按照完全平方公式分解因式即可;(2)先利用平方差公式分解,再利用平方差公式进行第二次分解,从而可得答案.【详解】解:(1) (2) 【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键,一定要注意分解因式要彻底.5、(1);(2)【解析】【分析】(1)根据题意,首先提取公因式,再根据完全平方公式的性质计算,即可得到答案;(2)根据题意,首先提取公因式,再根据平方差公式的性质计算,即可得到答案.【详解】(1);(2).【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握完全平方公式、平方差公式的性质,从而完成求解.
相关试卷
这是一份初中第八章 因式分解综合与测试课后练习题,共15页。试卷主要包含了下列各式的因式分解中正确的是,若x2+ax+9=等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,当n为自然数时,等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共17页。试卷主要包含了把分解因式的结果是.,下列运算错误的是,若x2+ax+9=等内容,欢迎下载使用。